Cable driven parallel robots (CDPRs) are often challenging to model and to dynamically control due to the inherent flexibility and elasticity of the cables. The additional inclusion of online geometric reconfigurability to a CDPR results in a complex underdetermined system with highly non-linear dynamics. The necessary (numerical) redundancy resolution requires multiple layers of optimization rendering its application computationally prohibitive for real-time control. Here, deep reinforcement learning approaches can offer a model-free framework to overcome these challenges and can provide a real-time capable dynamic control. This study discusses three settings for a model-free DRL implementation in dynamic trajectory tracking: (i) for a standard non-redundant CDPR with a fixed workspace; (ii) in an end-to-end setting with redundancy resolution on a reconfigurable CDPR; and (iii) in a decoupled approach resolving kinematic and actuation redundancies individually.
more »
« less
Stiffness Modulation for a Planar Mobile Cable-Driven Parallel Manipulators via Structural Reconfiguration
Abstract Mobile Cable-Driven Parallel Manipulators (m-CDPM) are a sub-class of CDPM with greater-capabilities (antagonistic cable-tensioning and reconfigurability) by virtue of mobility of the base-winches. In past work, we had also explored creation of adjustable spring-stiffness modules, in-line with cables, which decouple cable-stiffness and cable-tensions. All these internal-freedoms allow an m-CDPM to track desired trajectories while equilibrating end-effector wrenches and improving lateral disturbance-rejection. However, parameter and configuration selection is key to unlocking these benefits. To this end, we consider an approach to partition task-execution into a primary (fast) winch-tension control and secondary (slow) reconfiguration and joint-stiffness modulation. This would enable a primary trajectory-tracking task together with secondary task-space stiffness tailoring, using system-reconfiguration and joint-stiffness modulation. In this paper, we limit our scope to feasibility-evaluation to achieve the stiffness modulation as a secondary goal within an offline design-optimization setting (but with an eye towards real-time implementation). These aspects are illustrated in the context of a 3-PRP m-CDPM for tracking a desired trajectory within its wrench-feasible workspace. The secondary-task is the directional-alignment and shaping of the stiffness ellipsoid to shape the disturbance-rejection characteristics along the trajectory. The optimization is solved through constrained minimization of a multi-objective weighted cost function subject to non-linear workspace feasibility, and inequality stiffness and tension constraints.
more »
« less
- Award ID(s):
- 1924721
- PAR ID:
- 10280431
- Date Published:
- Journal Name:
- ASME 2020 International Design Engineering Technical Conferences and Computers in Engineering Conferences
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present an analytical design and experimental verification of trajectory tracking control of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to the origin within a finite terminal time, also referred to as the “settling time.” A key feature of this control strategy is that the settling time is explicitly assigned by the control designer to a value desired, or “prescribed” by the user and that the settling time is independent of the initial conditions and of the reference signal. In order to achieve this beneficial property with the controller, a scaling of the state by a function of time that grows unbounded toward the terminal time is employed. Through Lyapunov analysis, we first demonstrate that the proposed controller achieves regulation of all tracking errors within the prescribed time as well as the uniform boundedness of the joint torques, even in the presence of a matched, nonvanishing disturbance. Then, through both simulation and experiment, we demonstrate that the proposed controller is capable of converging to the desired trajectory within the prescribed time, despite large distance between the initial conditions and the reference trajectory, i.e., in spite of large initial tracking errors, and in spite of a sinusoidal disturbance being applied in each joint.more » « less
-
Soft robots have shown great potential to enable safe interactions with unknown environments due to their inherent compliance and variable stiffness. However, without knowledge of potential contacts, a soft robot could exhibit rigid behaviors in a goal-reaching task and collide into obstacles. In this paper, we introduce a Sliding Mode Augmented by Reactive Transitioning (SMART) controller to detect the contact events, adjust the robot’s desired trajectory, and reject estimated disturbances in a goal reaching task. We employ a sliding mode controller to track the desired trajectory with a nonlinear disturbance observer (NDOB) to estimate the lumped disturbance, and a switching algorithm to adjust the desired robot trajectories. The proposed controller is validated on a pneumatic-driven fabric soft robot whose dynamics is described by a new extended rigid-arm model to fit the actuator design. A stability analysis of the proposed controller is also presented. Experimental results show that, despite modeling uncertainties, the robot can detect obstacles, adjust the reference trajectories to maintain compliance, and recover to track the original desired path once the obstacle is removed. Without force sensors, the proposed model-based controller can adjust the robot’s stiffness based on the estimated disturbance to achieve goal reaching and compliant interaction with unknown obstacles.more » « less
-
Experimental and Analytical Prescribed-Time Trajectory Tracking Control of a 7-DOF Robot ManipulatorWe present an analytical design and experimental verification of trajectory tracking control of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to the origin within a finite terminal time. A key feature of this control strategy is that this terminal convergence time is explicitly prescribed by the control designer, and is thus independent of the initial conditions of the tracking errors. In order to achieve this beneficial property of the proposed controller, a scaling of the state by a function of time that grows unbounded towards the terminal time is employed. Through Lyapunov analysis, we first demonstrate that the proposed controller achieves regulation of all tracking errors within the prescribed time as well as the uniform boundedness of the joint torques, even in the presence of a matched, non-vanishing disturbance. Then, through both simulation and experiment, we demonstrate that the proposed controller is capable of converging to the desired trajectory within the prescribed time, despite large initial conditions of the tracking errors and a sinusoidal disturbance being applied in each joint.more » « less
-
Powered knee exoskeletons have shown potential for mobility restoration and power augmentation. However, the benefits of exoskeletons are partially offset by some design challenges that still limit their positive effects on people. Among them, joint misalignment is a critical aspect mostly because the human knee joint movement is not a fixed-axis rotation. In addition, remarkable mass and stiffness are also limitations. Aiming to minimize joint misalignment, this paper proposes a bio-inspired knee exoskeleton with a joint design that mimics the human knee joint. Moreover, to accomplish a lightweight and high compliance design, a high stiffness cable-tension amplification mechanism is leveraged. Simulation results indicate our design can reduce 49.3 and 71.9% maximum total misalignment for walking and deep squatting activities, respectively. Experiments indicate that the exoskeleton has high compliance (0.4 and 0.1 Nm backdrive torque under unpowered and zero-torque modes, respectively), high control bandwidth (44 Hz), and high control accuracy (1.1 Nm root mean square tracking error, corresponding to 7.3% of the peak torque). This work demonstrates performance improvement compared with state-of-the-art exoskeletons.more » « less
An official website of the United States government

