Mobile Cable-Driven Parallel Manipulators (m-CDPM) are a sub-class of CDPM with greater-capabilities (antagonistic cable-tensioning and reconfigurability) by virtue of mobility of the base-winches. In past work, we had also explored creation of adjustable spring-stiffness modules, in-line with cables, which decouple cable-stiffness and cable-tensions. All these internal-freedoms allow an m-CDPM to track desired trajectories while equilibrating end-effector wrenches and improving lateral disturbance-rejection. However, parameter and configuration selection is key to unlocking these benefits.
To this end, we consider an approach to partition task-execution into a primary (fast) winch-tension control and secondary (slow) reconfiguration and joint-stiffness modulation. This would enable a primary trajectory-tracking task together with secondary task-space stiffness tailoring, using system-reconfiguration and joint-stiffness modulation. In this paper, we limit our scope to feasibility-evaluation to achieve the stiffness modulation as a secondary goal within an offline design-optimization setting (but with an eye towards real-time implementation).
These aspects are illustrated in the context of a 3-PRP m-CDPM for tracking a desired trajectory within its wrench-feasible workspace. The secondary-task is the directional-alignment and shaping of the stiffness ellipsoid to shape the disturbance-rejection characteristics along the trajectory. The optimization is solved through constrained minimization of a multi-objective weighted cost function subject to non-linear workspace more »
- Award ID(s):
- 1924721
- Publication Date:
- NSF-PAR ID:
- 10280431
- Journal Name:
- ASME 2020 International Design Engineering Technical Conferences and Computers in Engineering Conferences
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present an analytical design and experimental verification of trajectory tracking control of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to the origin within a finite terminal time, also referred to as the “settling time.” A key feature of this control strategy is that the settling time is explicitly assigned by the control designer to a value desired, or “prescribed” by the user and that the settling time is independent of the initial conditions and of the reference signal. In order to achieve this beneficial property with the controller, a scaling of the state by a function of time that grows unbounded toward the terminal time is employed. Through Lyapunov analysis, we first demonstrate that the proposed controller achieves regulation of all tracking errors within the prescribed time as well as the uniform boundedness of the joint torques, even in the presence of a matched, nonvanishing disturbance. Then, through both simulation and experiment, we demonstrate that the proposed controller is capable of converging to the desired trajectory within the prescribed time, despite large distance between the initial conditions and the reference trajectory, i.e., in spite of large initial tracking errors, and in spite of amore »
-
Experimental and Analytical Prescribed-Time Trajectory Tracking Control of a 7-DOF Robot ManipulatorWe present an analytical design and experimental verification of trajectory tracking control of a 7-DOF robot manipulator, which achieves convergence of all tracking errors to the origin within a finite terminal time. A key feature of this control strategy is that this terminal convergence time is explicitly prescribed by the control designer, and is thus independent of the initial conditions of the tracking errors. In order to achieve this beneficial property of the proposed controller, a scaling of the state by a function of time that grows unbounded towards the terminal time is employed. Through Lyapunov analysis, we first demonstrate that the proposed controller achieves regulation of all tracking errors within the prescribed time as well as the uniform boundedness of the joint torques, even in the presence of a matched, non-vanishing disturbance. Then, through both simulation and experiment, we demonstrate that the proposed controller is capable of converging to the desired trajectory within the prescribed time, despite large initial conditions of the tracking errors and a sinusoidal disturbance being applied in each joint.
-
Abstract Trajectory optimization with musculoskeletal models can be used to reconstruct measured movements and to predict changes in movements in response to environmental changes. It enables an exhaustive analysis of joint angles, joint moments, ground reaction forces, and muscle forces, among others. However, its application is still limited to simplified problems in two dimensional space or straight motions. The simulation of movements with directional changes, e.g. curved running, requires detailed three dimensional models which lead to a high-dimensional solution space. We extended a full-body three dimensional musculoskeletal model to be specialized for running with directional changes. Model dynamics were implemented implicitly and trajectory optimization problems were solved with direct collocation to enable efficient computation. Standing, straight running, and curved running were simulated starting from a random initial guess to confirm the capabilities of our model and approach: efficacy, tracking and predictive power. Altogether the simulations required 1 h 17 min and corresponded well to the reference data. The prediction of curved running using straight running as tracking data revealed the necessity of avoiding interpenetration of body segments. In summary, the proposed formulation is able to efficiently predict a new motion task while preserving dynamic consistency. Hence, labor-intensive and thus costlymore »
-
Manipulation of deformable objects is a desired skill in making robots ubiquitous in manufacturing, service, healthcare, and security. Deformable objects are common in our daily lives, e.g., wires, clothes, bed sheets, etc., and are significantly more difficult to model than rigid objects. In this study, we investigate vision-based manipulation of linear flexible objects such as cables. We propose a geometric modeling method that is based on visual feedback to develop a general representation of the linear flexible object that is subject to gravity. The model characterizes the shape of the object by combining the curvatures on two projection planes. In this approach, we achieve tracking of the position and orientation (pose) of a cable-like object, the pose of its tip, and the pose of the selected grasp point on the object, which enables closed-loop manipulation of the object. We demonstrate the feasibility of our approach by completing the Plug Task used in the 2015 DARPA Robotics Challenge Finals, which involves unplugging a power cable from one socket and plugging it into another. Experiments show that we can successfully complete the task autonomously within 30 seconds.
-
Powered knee exoskeletons have shown potential for mobility restoration and power augmentation. However, the benefits of exoskeletons are partially offset by some design challenges that still limit their positive effects on people. Among them, joint misalignment is a critical aspect mostly because the human knee joint movement is not a fixed-axis rotation. In addition, remarkable mass and stiffness are also limitations. Aiming to minimize joint misalignment, this paper proposes a bio-inspired knee exoskeleton with a joint design that mimics the human knee joint. Moreover, to accomplish a lightweight and high compliance design, a high stiffness cable-tension amplification mechanism is leveraged. Simulation results indicate our design can reduce 49.3 and 71.9% maximum total misalignment for walking and deep squatting activities, respectively. Experiments indicate that the exoskeleton has high compliance (0.4 and 0.1 Nm backdrive torque under unpowered and zero-torque modes, respectively), high control bandwidth (44 Hz), and high control accuracy (1.1 Nm root mean square tracking error, corresponding to 7.3% of the peak torque). This work demonstrates performance improvement compared with state-of-the-art exoskeletons.