skip to main content


Title: The vortex-entrainment sheet in an inviscid fluid: theory and separation at a sharp edge
In this paper a model for viscous boundary and shear layers in three dimensions is introduced and termed a vortex-entrainment sheet. The vorticity in the layer is accounted for by a conventional vortex sheet. The mass and momentum in the layer are represented by a two-dimensional surface having its own internal tangential flow. Namely, the sheet has a mass density per-unit-area making it dynamically distinct from the surrounding outer fluid and allowing the sheet to support a pressure jump. The mechanism of entrainment is represented by a discontinuity in the normal component of the velocity across the sheet. The velocity field induced by the vortex-entrainment sheet is given by a generalized Birkhoff–Rott equation with a complex sheet strength. The model was applied to the case of separation at a sharp edge. No supplementary Kutta condition in the form of a singularity removal is required as the flow remains bounded through an appropriate balance of normal momentum with the pressure jump across the sheet. A pressure jump at the edge results in the generation of new vorticity. The shedding angle is dictated by the normal impulse of the intrinsic flow inside the bound sheets as they merge to form the free sheet. When there is zero entrainment everywhere the model reduces to the conventional vortex sheet with no mass. Consequently, the pressure jump must be zero and the shedding angle must be tangential so that the sheet simply convects off the wedge face. Lastly, the vortex-entrainment sheet model is demonstrated on several example problems.  more » « less
Award ID(s):
1805776
NSF-PAR ID:
10097583
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
866
ISSN:
0022-1120
Page Range / eLocation ID:
660 to 688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a state-variable formulation to model and simulate the 2D unsteady aerodynamics of an airfoil undergoing arbitrary motion kinematics. The model builds upon a large-angle unsteady aerodynamic formulation in which the airfoil is represented using a lumped vortex element (LVE) model. The airfoil is divided into several panels, with a bound vortex placed on each panel. At any time instant, the bound-vortex strengths are determined by employing zero-normal-flow conditions at the control points located on each panel. The vorticity shed from the trailing edge of the airfoil is modeled using discrete vortices that move freely in the flow field. The required state variables are first identified, and all the time derivative terms of the state variables are then derived to form the final state-variable representation. Trailing-edge vortex shedding is incorporated using the Kelvin condition. The final state variable equation can be solved as an ordinary differential equation using any standard ODE-solving algorithm. Three case studies are presented here to evaluate the predictions of the model. In the cases considered here, the airfoil undergoes various unsteady plunge motions. The aerodynamic load history and the wake patterns are compared against the results from the low-order model developed by Narsipur et al. [1] in previous research. The comparison shows that the current state-variable formulation captures the unsteady flow characteristics and the aerodynamic load in good agreement with the reference results. 
    more » « less
  2. Recent studies reveal that at large friction Reynolds number delta^+ the outer, inertially-dominated region of the turbulent boundary layer is composed of large scale zones of uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary layer thickness, the fissure thickness is O(1/sqrt{delta^+}), while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity u_tau. A simple model that exploits these essential elements of the turbulent boundary layer structure at large delta^+ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical moments are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large delta^+. In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters. 
    more » « less
  3. This work presents an exact solution of Euler's incompressible equations in the context of a bidirectional vortex evolving inside a conically shaped cyclonic chamber. The corresponding helical flowfield is modeled under inviscid conditions assuming constant angular momentum. By leveraging the axisymmetric nature of the problem, a steady-state solution of the generalized Beltramian type is obtained directly from first principles, namely, from the Bragg–Hawthorne equation in spherical coordinates. The resulting stream function representation enables us to fully describe the ensuing swirl-dominated motion including its fundamental flow characteristics. After identifying an isolated singularity that appears at a cone divergence half-angle of 63.43°, two piecewise formulations are provided that correspond to either fluid injection or extraction at the top section of the conical cyclone. In this process, analytical expressions are readily retrieved for the three velocity components, vorticity, and pressure. Other essential flow indicators, such as the theoretically preferred mantle orientation, the empirically favored locus of zero vertical velocity, the maximum polar and axial velocities, the crossflow velocity, and other such terms, are systematically deduced. Results are validated using limiting process verifications and comparisons to both numerical and experimental measurements. The subtle differences between the present model and a strictly Beltramian flowfield are also highlighted and discussed. The conically cyclonic configuration considered here is relevant to propulsive devices, such as vortex-fired liquid rocket engines with tapered walls; meteorological phenomena, such as tornadoes, dust devils, and fire whirls; and industrial contraptions, such as cyclonic flow separators, collectors, centrifuges, boilers, vacuum cleaners, cement grinders, and so on. 
    more » « less
  4. null (Ed.)
    A computational approach based on a k-ω delayed detached eddy simulation model for predicting aerodynamic loads on a smooth circular cylinder is verified against experiments. Comparisons with experiments are performed for flow over a rigidly mounted (static) cylinder and for an elastically-mounted rigid cylinder oscillating in the transverse direction due to vortex-induced vibration (VIV). For the static cases, measurement data from the literature is used to validate the predictions for normally incident flow. New experiments are conducted as a part of this study for yawed flow, where the cylinder axis is inclined with respect to the inflow velocity at the desired yaw angle, β = 30◦. Good agreement is observed between the predictions and measurements for mean and rms surface pressure. Three yawed flow cases (β = 15◦, 30◦, & 45◦) are simulated and the results are found to be independent of β (independence principle) when the flow speed normal to the cylinder axis is selected as the reference velocity scale. Dynamic (VIV) simulations for an elastically-mounted rigid cylinder are performed by coupling the flow solver with a solid dynamics solver where the cylinder motion is modeled as a mass–spring–damper system. The simulations accurately predict the displacement amplitude and unsteady loading over a wide range of reduced velocity, including the region where ‘‘lock-in’’ (synchronization) occurs. VIV simulations are performed at two yaw angles, β = 0◦ and 45◦ and the independence principle is found to be valid over the range of reduced velocities tested with a slightly higher discrepancy when the vortex shedding frequency is close to the natural frequency of the system. 
    more » « less
  5. Abstract

    We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply connected fluid domain that includes stationary obstacles and variable bottom topography. One approach is formulated in terms of the surface velocity potential while the other evolves the vortex sheet strength. Both methods employ layer potentials in the form of periodized Cauchy integrals to compute the normal velocity of the free surface, are compatible with arbitrary parameterizations of the free surface and boundaries, and allow for circulation around each obstacle, which leads to multiple-valued velocity potentials but single-valued stream functions. We prove that the resulting second-kind Fredholm integral equations are invertible, possibly after a physically motivated finite-rank correction. In an angle-arclength setting, we show how to avoid curve reconstruction errors that are incompatible with spatial periodicity. We use the proposed methods to study gravity-capillary waves generated by flow around several elliptical obstacles above a flat or variable bottom boundary. In each case, the free surface eventually self-intersects in a splash singularity or collides with a boundary. We also show how to evaluate the velocity and pressure with spectral accuracy throughout the fluid, including near the free surface and solid boundaries. To assess the accuracy of the time evolution, we monitor energy conservation and the decay of Fourier modes and compare the numerical results of the two methods to each other. We implement several solvers for the discretized linear systems and compare their performance. The fastest approach employs a graphics processing unit (GPU) to construct the matrices and carry out iterations of the generalized minimal residual method (GMRES).

     
    more » « less