skip to main content

Title: Numerical algorithms for water waves with background flow over obstacles and topography

We present two accurate and efficient algorithms for solving the incompressible, irrotational Euler equations with a free surface in two dimensions with background flow over a periodic, multiply connected fluid domain that includes stationary obstacles and variable bottom topography. One approach is formulated in terms of the surface velocity potential while the other evolves the vortex sheet strength. Both methods employ layer potentials in the form of periodized Cauchy integrals to compute the normal velocity of the free surface, are compatible with arbitrary parameterizations of the free surface and boundaries, and allow for circulation around each obstacle, which leads to multiple-valued velocity potentials but single-valued stream functions. We prove that the resulting second-kind Fredholm integral equations are invertible, possibly after a physically motivated finite-rank correction. In an angle-arclength setting, we show how to avoid curve reconstruction errors that are incompatible with spatial periodicity. We use the proposed methods to study gravity-capillary waves generated by flow around several elliptical obstacles above a flat or variable bottom boundary. In each case, the free surface eventually self-intersects in a splash singularity or collides with a boundary. We also show how to evaluate the velocity and pressure with spectral accuracy throughout the fluid, including near the free surface and solid boundaries. To assess the accuracy of the time evolution, we monitor energy conservation and the decay of Fourier modes and compare the numerical results of the two methods to each other. We implement several solvers for the discretized linear systems and compare their performance. The fastest approach employs a graphics processing unit (GPU) to construct the matrices and carry out iterations of the generalized minimal residual method (GMRES).

more » « less
Award ID(s):
1907684 1909035 1716560
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Advances in Computational Mathematics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the Euler equations for the potential flow of an ideal incompressible fluid of infinite depth with a free surface in two-dimensional geometry. Both gravity and surface tension forces are taken into account. A time-dependent conformal mapping is used which maps the lower complex half-plane of the auxiliary complex variable $w$ into the fluid’s area, with the real line of $w$ mapped into the free fluid’s surface. We reformulate the exact Eulerian dynamics through a non-canonical non-local Hamiltonian structure for a pair of the Hamiltonian variables. These two variables are the imaginary part of the conformal map and the fluid’s velocity potential, both evaluated at the fluid’s free surface. The corresponding Poisson bracket is non-degenerate, i.e. it does not have any Casimir invariant. Any two functionals of the conformal mapping commute with respect to the Poisson bracket. The new Hamiltonian structure is a generalization of the canonical Hamiltonian structure of Zakharov ( J. Appl. Mech. Tech. Phys. , vol. 9(2), 1968, pp. 190–194) which is valid only for solutions for which the natural surface parametrization is single-valued, i.e. each value of the horizontal coordinate corresponds only to a single point on the free surface. In contrast, the new non-canonical Hamiltonian equations are valid for arbitrary nonlinear solutions (including multiple-valued natural surface parametrization) and are equivalent to the Euler equations. We also consider a generalized hydrodynamics with the additional physical terms in the Hamiltonian beyond the Euler equations. In that case we identify powerful reductions that allow one to find general classes of particular solutions. 
    more » « less
  2. null (Ed.)
    The fog-basking behavior of the Onymacris unguicularis, a beetle species living in the coastal regions of the Namibian desert, has recently caught the attention of the engineering community, as suggesting a viable biomimetic approach to address the problem of harvesting water in arid regions of the globe. Previous research has focused on observation and analysis of the beetle’s elytron properties and how these affect fog-collection rates. The head stance taken by the Onymacris unguicularis when fog basking is well documented. However, how this stance affects droplet collection has not been studied up to now. The present paper addresses this problem from a computational fluid dynamics perspective, where three-dimensional numerical simulations are used to characterize the fog flow properties around a simplified geometry mimicking the beetle’s body. The simulations employ two-way coupling between the gas flow and the dispersed fog phase to account for feedback effects of fog droplets on the carrier fluid (air), and assume that droplets are captured after hitting the elytron surface. The study considers several combinations of free-stream velocity and droplet volume fraction. The analysis reveals that there is a range of head-stance angles, corresponding to an inclination of the beetle between 35 deg and 45 deg with respect to the horizon, that maximizes water collection on the beetle’s back, in qualitative agreement with observations in nature and laboratory experiments. A rationale is proposed to explain this phenomenon, finding that the specific head stance corresponds to the maximum residence time of fluid particles above the beetle’s elytron surface. This, in turn, designates the maximum likelihood for water droplets to be captured in the boundary layer developing over the beetle and subsequently hit the surface where they get captured. The results reveal the importance of the fluid flow pattern around the beetle’s body in addition to the microphysical properties of the elytron when reliable predictions of the water droplet collection efficiency are sought. 
    more » « less
  3. Abstract

    Wave front propagation with nontrivial bottom topography is studied within the formalism of hyperbolic long wave models. Evolution of nonsmooth initial data is examined, and, in particular, the splitting of singular points and their short time behavior is described. In the opposite limit of longer times, the local analysis of wave fronts is used to estimate the gradient catastrophe formation and how this is influenced by the topography. The limiting cases when the free surface intersects the bottom boundary, belonging to the so‐called “physical” and “nonphysical” vacuum classes, are examined. Solutions expressed by power series in the spatial variable lead to a hierarchy of ordinary differential equations for the time‐dependent series coefficients, which are shown to reveal basic differences between the two vacuum cases: for nonphysical vacuums, the equations of the hierarchy are recursive and linear past the first two pairs, whereas for physical vacuums, the hierarchy is nonrecursive, fully coupled, and nonlinear. The former case may admit solutions that are free of singularities for nonzero time intervals, whereas the latter is shown to develop nonstandard velocity shocks instantaneously. Polynomial bottom topographies simplify the hierarchy, as they contribute only a finite number of inhomogeneous forcing terms to the equations in the recursion relations. However, we show that truncation to finite‐dimensional systems and polynomial solutions is in general only possible for the case of a quadratic bottom profile. In this case, the system's evolution can reduce to, and is completely described by, a low‐dimensional dynamical system for the time‐dependent coefficients. This system encapsulates all the nonlinear properties of the solution for general power series initial data, and, in particular, governs the loss of regularity in finite times at the dry point. For the special case of parabolic bottom topographies, an exact, self‐similar solution class is introduced and studied to illustrate via closed‐form expressions the general results.

    more » « less
  4. Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension. 
    more » « less
  5. In Stokes flow, Purcell's scallop theorem forbids objects with time-reversible (reciprocal) swimming strokes from moving. In the presence of inertia, this restriction is eased and reciprocally deforming bodies can swim. A number of recent works have investigated dimer models that swim reciprocally at intermediate Reynolds numbers ${\textit Re} \approx 1$ –1000. These show interesting results (e.g. switches of the swim direction as a function of inertia) but the results vary and seem to be case specific. Here, we introduce a general model and investigate the behaviour of an asymmetric spherical dimer of oscillating length for small-amplitude motion at intermediate ${\textit {Re}}$ . In our analysis we make the important distinction between particle and fluid inertia, both of which need to be considered separately. We asymptotically expand the Navier–Stokes equations in the small-amplitude limit to obtain a system of linear partial differential equations. Using a combination of numerical (finite element) and analytical (reciprocal theorem, method of reflections) methods we solve the system to obtain the dimer's swim speed and show that there are two mechanisms that give rise to motion: boundary conditions (an effective slip velocity) and Reynolds stresses. Each mechanism is driven by two classes of sphere–sphere interactions, between one sphere's motion and (1) the oscillating background flow induced by the other's motion, and (2) a geometric asymmetry induced by the other's presence. We can thus unify and explain behaviours observed in other works. Our results show how sensitive, counterintuitive and rich motility is in the parameter space of finite inertia of particles and fluid. 
    more » « less