Peracetic acid (PAA) is a widely used disinfectant, and combined UV light with PAA (i.e. UV/PAA) can be a novel advanced oxidation process for elimination of water contaminants. This study is among the first to evaluate the photolysis of PAA under UV irradiation (254 nm) and degradation of pharmaceuticals by UV/PAA. PAA exhibited high quantum yields (Φ254nm = 1.20 and 2.09 mol·Einstein−1 for the neutral (PAA0) and anionic (PAA-) species, respectively) and also showed scavenging effects on hydroxyl radicals (k•OH/PAA0 = (9.33±0.3)×108 M−1·s−1 and k•OH/PAA- = (9.97±2.3)×109 M−1·s−1). The pharmaceuticals were persistent with PAA alone but degraded rapidly by UV/PAA.more »
Rapid Disinfection by Peracetic Acid Combined with UV Irradiation
This study proposes a novel disinfection process by sequential application of peracetic acid (PAA) and ultra-violet light (UV), on the basis of elucidation of disinfection mechanisms under UV/PAA. Results show that hydroxyl radicals, generated by UV-activated PAA, contribute to the enhanced inactivation of Escherichia coli under UV/PAA compared to PAA alone or UV alone. Furthermore, the location of hydroxyl radical generation is a critical factor. Unlike UV/H2O2, which generates hydroxyl radicals mainly in the bulk solution, the hydroxyl radicals under UV/PAA are produced close to or inside E. coli cells, due to PAA diffusion. Therefore, hydroxyl radicals exert significantly stronger disinfection power under UV/PAA than under UV/H2O2 conditions. Pre-exposing E. coli to PAA in the dark followed by application of UV (i.e., a PAA-UV/PAA process) promotes diffusion of PAA to the cells and achieves excellent disinfection efficiency while saving more than half of the energy cost associated with UV compared to simultaneous application of UV and PAA. The effectiveness of this new disinfection strategy has been demonstrated not only in lab water but also in wastewater matrices.
- Award ID(s):
- 1609361
- Publication Date:
- NSF-PAR ID:
- 10097602
- Journal Name:
- Environmental science & technology letters
- Volume:
- 5
- Issue:
- 6
- Page Range or eLocation-ID:
- 400-404
- ISSN:
- 2328-8930
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
After decades of UV disinfection practice and numerous studies on the potential for pathogens to undergo dark or photo-repair after UV exposure, recent advances in UV light emitting diode (LED) technologies prompt renewed attention to bacterial reactivation and regrowth processes after UV exposure. The aspect of photorepair conditions warrants particular attention, because even studies on conventional mercury vapor lamps have not sufficiently characterized these parameters. Wastewater encounters a wide range of environmental conditions upon discharge ( e.g. , solar irradiation and dissolved organics) which may affect repair processes and ultimately lead to overestimations of pathogen removal. Escherichia coli was usedmore »
-
To better understand the elimination of transforming activity of antibiotic resistance genes (ARGs), this study investigated the deactivation of transforming activity of an ARG (in Escherichia coli as a host) and ARG degradation (according to quantitative PCR [qPCR] with different amplicon sizes) during UV (254 nm) and UV/H 2 O 2 treatments of plasmid pUC19 containing an ampicillin resistance gene ( amp R ). The required UV fluence for each log 10 reduction of the transforming activity during UV treatment was ∼37 mJ cm −2 for both extra- and intra-cellular pUC19 (the latter within E. coli ). The resulting fluence-basedmore »
-
Microplastics (MP) have been proposed as a vector for pathogenic microorganisms in the freshwater environment. The objectives of this study were (1) to compare the fecal indicator growth in biofilms on MP and material control microparticles incubated in different wastewater fractions and (2) to compare MP biofilm, natural microparticle biofilm, and planktonic cell susceptibility to disinfection by peracetic acid (PAA). Biofilms were grown on high‐density polyethylene, low‐density polyethylene, polypropylene MP or wood chips (as a material control) and incubated in either wastewater influent or pre‐disinfection secondary effluent. Reactors were disinfected with PAA, biofilms were dislodged, and fecal coliform and E.more »
-
To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WTmore »