We present our results on calculations of the escape of Ly-alpha and Ly-continuum radiation from low- and intermediate-mass galaxies. Such systems may have played a crucial role in reionization at early times. We use simple analytic models for the underlying galaxy profiles and compare them with semi-analytic and numerical computations of escaping radiation from such systems. We comment on the possible range of values for the critical spectral index of the source radiation at which H and He ionization start to compete, under a variety of physical conditions. Last, we examine data of low- and intermediate-mass galaxy populations in the local volume, including strong-emission line systems like green pea galaxies and Ly-alpha emitting systems, that closely resemble the earliest halos that hosted the first stars. We share a set of observable galaxy properties that could characterize the "leakers", whose high-redshift counterparts would have had significant escape of Ly-alpha and Ly-continuum radiation. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.
more »
« less
Near Field Cosmology: Characterizing the Properties Leading to Radiation Leakage in Local Low- and Intermediate-Mass Galaxies
The escape of radiation from galaxies is a frontier cosmology problem with wide-ranging implications for reionization, galaxy evolution and detection strategies for high-redshift systems. Low- and intermediate-mass galaxies may have played a crucial role in reionization at early times, and by studying their analogues in the local universe, we can test models of radiation escape in galaxies that are more observationally accessible. We present here our cross-sectional analyses of the characteristics of low-redshift galaxies from surveys including KISSR, LARS, and two Green Pea galaxy samples through various computational and visualization techniques. Local systems with measured high (> 0.1) Lyman-alpha escape fractions tend to have high equivalent widths in H-alpha (EWHA) and low Lyman-alpha red-peak velocity. The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high EWHA (please see accompanying poster by Olivieri Villalvazo et al. at this meeting). These might represent a population of local starforming galaxies that are more common than, e.g., Green Pea galaxies, that also have potentially high Lyman-alpha, and likely Lyman-continuum, escape. These galaxies could potentially test theoretical models and advance studies of the "first-light" galaxies anticipated from the James Webb Space Telescope through characterizing the underlying physical properties that contribute to radiation leakage. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.
more »
« less
- Award ID(s):
- 1637339
- PAR ID:
- 10097663
- Date Published:
- Journal Name:
- American Astronomical Society, AAS Meeting
- Volume:
- 233
- Page Range / eLocation ID:
- 383.04
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present our analyses of 39 selected star-forming low- to intermediate-mass low-redshift galaxies from the KISSR survey. These galaxies were selected as being representative in the local volume of the kinds of early galaxies that might have hosted the first stars, and span a range of galaxy properties (EWHA, reddening, metallicity, stellar mass). The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high equivalent widths in H-alpha. Using archival GALEX data and theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of these low-mass low-z KISSR galaxies to their escape fractions in Ly-alpha (LyA) and Ly-continuum (LyC) radiation, confirming a relationship between a galaxy's steep UV spectral slope and a significant (> 0.1) LyA escape fraction. This relationship is seen in existing data of low- to intermediate-mass galaxies in the local volume (please see accompanying poster by Pilon et al. at this meeting). We also translate measured LyA escape fractions in the literature for 14 LARS galaxies and a few dozen green pea galaxies to their LyC escape fractions using similar modeling. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.more » « less
-
ABSTRACT The high-redshift intergalactic medium (IGM) and the primeval galaxy population are rapidly becoming the new frontier of extragalactic astronomy. We investigate the IGM properties and their connection to galaxies at z ≥ 5.5 under different assumptions for the ionizing photon escape and the nature of dark matter, employing our novel thesan radiation-hydrodynamical simulation suite, designed to provide a comprehensive picture of the emergence of galaxies in a full reionization context. Our simulations have realistic ‘late’ reionization histories, match available constraints on global IGM properties, and reproduce the recently observed rapid evolution of the mean free path of ionizing photons. We additionally examine high-z Lyman-α transmission. The optical depth evolution is consistent with data, and its distribution suggests an even-later reionization than simulated, although with a strong sensitivity to the source model. We show that the effects of these two unknowns can be disentangled by characterizing the spectral shape and separation of Lyman-α transmission regions, opening up the possibility to observationally constrain both. For the first time in simulations, thesan reproduces the modulation of the Lyman-α flux as a function of galaxy distance, demonstrating the power of coupling a realistic galaxy formation model with proper radiation hydrodynamics. We find this feature to be extremely sensitive on the timing of reionization, while being relatively insensitive to the source model. Overall, thesan produces a realistic IGM and galaxy population, providing a robust framework for future analysis of the high-z Universe.more » « less
-
ABSTRACT The connection between the escape fraction of ionizing radiation (fesc) and the properties of galaxies, such as stellar mass ($$\rm M_{\rm *}$$), age, star-formation rate (SFR), and dust content, are key inputs for reionization models, but many of these relationships remain untested at high redshift. We present an analysis of a sample of 96 $$z$$ ∼ 3 galaxies from the Keck Lyman Continuum Spectroscopic Survey (KLCS). These galaxies have both sensitive Keck/LRIS spectroscopic measurements of the Lyman continuum (LyC) region, and multiband photometry that places constraints on stellar population parameters. We construct composite spectra from subsamples binned as a function of galaxy property and quantify the ionizing-photon escape for each composite. We find a significant anti-correlation between fesc and $$\rm M_{\rm *}$$, consistent with predictions from cosmological zoom-in simulations. We also find significant anti-correlation between fesc and E(B−V), encoding the underlying physics of LyC escape in our sample. We also find no significant correlation between fesc and either stellar age or specific SFR (= SFR/$$\rm M_{\rm *}$$), challenging interpretations that synchronize recent star formation and favorable conditions for ionizing escape. The galaxy properties now shown to correlate with fesc in the KLCS are Lyα equivalent width, UV Luminosity, $$\rm M_{\rm *}$$, SFR, and E(B−V), but not age or sSFR. This comprehensive analysis of galaxy properties and LyC escape at high redshift will be used to guide future models and observations of the reionization epoch.more » « less
-
While the shape of the Lyα profile is viewed as one of the best tracers of ionizing-photon escape fraction (fesc) within low redshift (z~0.3) surveys of the Lyman continuum, this connection remains untested at high redshift. Here, we combine deep, rest-UV Keck/LRIS spectra of 80 objects from the Keck Lyman Continuum Spectroscopic Survey with rest-optical Keck/MOSFIRE spectroscopy in order to examine potential correlations between Lyα profile shape and the escape of ionizing radiation within z~3 star-forming galaxies. We measure the velocity separation between double-peaked Lyα emission structure (vsep), between red-side Lyα emission peaks and systemic (vLyα,red), and between red-side emission peaks and low-ionization interstellar absorption lines (vLyα−LIS). We find that the IGM-corrected ratio of ionizing to non-ionizing flux density is significantly higher in KLCS objects with lower vLyα,red. We find no significant trend between measures of ionizing-photon escape and vLyα−LIS. We compare our results to measurements of z~0.3 "Green Peas" from the literature and find that KLCS objects have larger vsep at fixed vLyα,red, larger fesc at fixed vLyα,red, and higher vLyα,red overall than z~0.3 analogs. We conclude that the Lyα profile shapes of our high-redshift sources are fundamentally different, and that measurements of profile shape such as vLyα,red map on to fesc in different ways. We caution against building reionization-era fesc diagnostics based purely on Lyα profiles of low-redshift dwarf galaxies. Tracing vsep, vLyα,red, and fesc in a larger sample of z~3 galaxies will reveal how these variables may be connected for galaxies at the epoch of reionization.more » « less
An official website of the United States government

