skip to main content


Title: Ly{\alpha} profile shape as an escape-fraction diagnostic at high redshift
While the shape of the Lyα profile is viewed as one of the best tracers of ionizing-photon escape fraction (fesc) within low redshift (z~0.3) surveys of the Lyman continuum, this connection remains untested at high redshift. Here, we combine deep, rest-UV Keck/LRIS spectra of 80 objects from the Keck Lyman Continuum Spectroscopic Survey with rest-optical Keck/MOSFIRE spectroscopy in order to examine potential correlations between Lyα profile shape and the escape of ionizing radiation within z~3 star-forming galaxies. We measure the velocity separation between double-peaked Lyα emission structure (vsep), between red-side Lyα emission peaks and systemic (vLyα,red), and between red-side emission peaks and low-ionization interstellar absorption lines (vLyα−LIS). We find that the IGM-corrected ratio of ionizing to non-ionizing flux density is significantly higher in KLCS objects with lower vLyα,red. We find no significant trend between measures of ionizing-photon escape and vLyα−LIS. We compare our results to measurements of z~0.3 "Green Peas" from the literature and find that KLCS objects have larger vsep at fixed vLyα,red, larger fesc at fixed vLyα,red, and higher vLyα,red overall than z~0.3 analogs. We conclude that the Lyα profile shapes of our high-redshift sources are fundamentally different, and that measurements of profile shape such as vLyα,red map on to fesc in different ways. We caution against building reionization-era fesc diagnostics based purely on Lyα profiles of low-redshift dwarf galaxies. Tracing vsep, vLyα,red, and fesc in a larger sample of z~3 galaxies will reveal how these variables may be connected for galaxies at the epoch of reionization.  more » « less
Award ID(s):
2009313
PAR ID:
10543306
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
ApJ
ISSN:
1538-4357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While the shape of the Lyαprofile is viewed as one of the best tracers of ionizing-photon escape fraction (fesc) within low-redshift (z∼ 0.3) surveys of the Lyman continuum, this connection remains untested at high redshift. Here, we combine deep, rest-UV Keck/LRIS spectra of 80 objects from the Keck Lyman Continuum Spectroscopic Survey with rest-optical Keck/MOSFIRE spectroscopy in order to examine potential correlations between Lyαprofile shape and the escape of ionizing radiation withinz∼ 3 star-forming galaxies. We measure the velocity separation between double-peaked Lyαemission structure (vsep), between red-side Lyαemission peaks and systemic (vLyα,red), and between red-side emission peaks and low-ionization interstellar absorption lines (vLyα−LIS). We find that the IGM-corrected ratio of ionizing to nonionizing flux density is significantly higher in KLCS objects with lowervLyα,red. We find no significant trend between measures of ionizing-photon escape andvLyα−LIS. We compare our results to measurements ofz∼ 0.3 “Green Peas” from the literature and find that KLCS objects have largervsepat fixedvLyα,red, largerfescat fixedvLyα,red, and highervLyα,redoverall thanz∼ 0.3 analogs. We conclude that the Lyαprofile shapes of our high-redshift sources are fundamentally different, and that measurements of profile shape such asvLyα,redmap on tofescin different ways. We caution against building reionization-erafescdiagnostics based purely on Lyαprofiles of low-redshift dwarf galaxies. Tracingvsep,vLyα,red, andfescin a larger sample ofz∼ 3 galaxies will reveal how these variables may be connected for galaxies at the epoch of reionization.

     
    more » « less
  2. ABSTRACT The connection between the escape fraction of ionizing photons (fesc) and star formation rate surface density (ΣSFR) is a key input for reionization models, but remains untested at high redshift. We analyse 35 z ∼ 3 galaxies from the Keck Lyman Continuum Survey (KLCS) covered by deep, rest far-UV spectra of the Lyman continuum (LyC) and high-resolution HST V606 imaging, enabling estimates of both fesc and rest-UV sizes. Using Sérsic profile fits to HST images and spectral-energy distribution fits to multiband photometry, we measure effective sizes and SFRs for the galaxies in our sample, and separate the sample into two bins of ΣSFR. Based on composite spectra, we estimate 〈fesc〉 for both ΣSFR subsamples, finding no significant difference in 〈fesc〉 between the two. To test the representativeness of the KLCS HST sample and robustness of this result, we attempt to recover the well-established correlation between fesc and Lyα equivalent width. This correlation is not significant within the KLCS HST sample, indicating that the sample is insufficient for correlating fesc and galaxy properties such as ΣSFR. We perform stacking simulations using the KLCS parent sample to determine the optimal sample size for robust probes of the fesc-ΣSFR connection to inform future observing programs. For a program with a selection independent of ionizing properties, ≥90 objects are required; for one preferentially observing strongly-leaking LyC sources, ≥58 objects are required. More generally, measuring the connection between fesc and ΣSFR requires a larger, representative sample spanning a wide dynamic range in galaxies properties such as ΣSFR. 
    more » « less
  3. ABSTRACT

    The connection between the escape fraction of ionizing radiation (fesc) and the properties of galaxies, such as stellar mass ($\rm M_{\rm *}$), age, star-formation rate (SFR), and dust content, are key inputs for reionization models, but many of these relationships remain untested at high redshift. We present an analysis of a sample of 96 $z$ ∼ 3 galaxies from the Keck Lyman Continuum Spectroscopic Survey (KLCS). These galaxies have both sensitive Keck/LRIS spectroscopic measurements of the Lyman continuum (LyC) region, and multiband photometry that places constraints on stellar population parameters. We construct composite spectra from subsamples binned as a function of galaxy property and quantify the ionizing-photon escape for each composite. We find a significant anti-correlation between fesc and $\rm M_{\rm *}$, consistent with predictions from cosmological zoom-in simulations. We also find significant anti-correlation between fesc and E(B−V), encoding the underlying physics of LyC escape in our sample. We also find no significant correlation between fesc and either stellar age or specific SFR (= SFR/$\rm M_{\rm *}$), challenging interpretations that synchronize recent star formation and favorable conditions for ionizing escape. The galaxy properties now shown to correlate with fesc in the KLCS are Lyα equivalent width, UV Luminosity, $\rm M_{\rm *}$, SFR, and E(B−V), but not age or sSFR. This comprehensive analysis of galaxy properties and LyC escape at high redshift will be used to guide future models and observations of the reionization epoch.

     
    more » « less
  4. ABSTRACT

    The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame) constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Observations of reionization-era analogues at z ∼ 3 are a powerful tool for constraining reionization. Rest-ultraviolet observations are particularly useful, in which both direct and indirect tracers of ionizing-photon production and escape can be observed. We analyse a sample of 124 z ∼ 3 galaxies from the Keck Lyman Continuum Spectroscopic Survey, with sensitive spectroscopic measurements of the Lyman continuum region. We present a method of removing foreground contamination from our sample using high-resolution, multiband Hubble Space Telescope imaging. We re-measure the global properties of the cleaned sample of 13 individually detected Lyman continuum sources and 107 individually undetected sources, including a sample-averaged absolute escape fraction of fesc, abs = 0.06 ± 0.01 and a sample-averaged ratio of ionizing to non-ionizing ultraviolet flux density of 〈f900/f1500〉out = 0.040 ± 0.006, corrected for attenuation from the intergalactic and circumgalactic media. Based on composite spectra, we also recover a strong positive correlation between 〈f900/f1500〉out and Lyα equivalent width (Wλ(Ly$\rm \alpha$)) and a negative correlation between 〈f900/f1500〉out and UV luminosity. As in previous work, we interpret the relationship between 〈f900/f1500〉out and Wλ(Ly$\rm \alpha$) in terms of the modulation of the escape of ionizing radiation from star-forming galaxies based on the covering fraction of neutral gas. We also use a Wλ(Ly$\rm \alpha$)-weighted 〈f900/f1500〉out to estimate an ionizing emissivity from star-forming galaxies at z ∼ 3 as ϵLyC ≃ 5.5 × 1024 erg s−1 Hz−1 Mpc−3. This estimate, evaluated using the uncontaminated sample of this work, affirms that the contribution of galaxies to the ionizing background at z ∼ 3 is comparable to that of active galactic nuclei. 
    more » « less