We report the observation and analysis of a new electronic transition in gas-phase vanadium hydride (VH), identified as the C′5Δ–X5Δ (1,0) band with an origin at 14,015 cm− 1 (714 nm). The spectrum was recorded by laser excitation spectroscopy, with laser-induced fluorescence detected to the X5Δ (v =1) level. Dispersed fluorescence measurements enabled a detailed characterization of the vibrationally excited ground state, yielding a vibrational interval of ΔG1/2 = 1606.6(2) cm− 1 . Despite the presence of significant local perturbations—particularly in the Ω =0 and 1 spin components of the C′5Δ state—a full rotational analysis of the spectrum using a Hund’s case (a) Hamiltonian was achieved. Spectroscopic constants including rotational, spin–orbit, spin–rotation, and Λ-doubling parameters are reported for both the new C′5Δ state and the X5Δ (v = 1) level. Additionally, we observed a small local perturbation in the X5Δ₁ (v =1) level near J =9, attributed to homogeneous spin–orbit and heterogeneous L-uncoupling interactions with the previously analyzed A5Π (v =0) state. An X5Δ ~ A5Π coupled Hamiltonian was used to model this perturbation and yielded interaction parameters roughly consistent with semi-empirical estimates. This work represents only the second analyzed spectroscopic transition of gas-phase VH.
more »
« less
Charge-State Field Evaporation Behavior in Cu(V) Nanocrystalline Alloys
Abstract Atom probe tomography (APT) of a nanocrystalline Cu–7 at.% V thin film annealed at 400°C for 1 h revealed chemical partitioning in the form of solute segregation. The vanadium precipitated along high angle grain boundaries and at triple junctions, determined by cross-correlative precession electron diffraction of the APT specimen. Upon field evaporation, the V 2+ /(V 1+ + VH 1+ ) ratio from the decomposed ions was ~3 within the matrix grains and ~16 within the vanadium precipitates. It was found that the VH 1+ complex was prevalent in the matrix, with its presence explained in terms of hydrogen's ability to assist in field evaporation. The change in the V 2+ /(V 1+ + VH 1+ ) charge-state ratio (CSR) was studied as a function of base temperature (25–90 K), laser pulse energy (50–200 pJ), and grain orientation. The strongest influence on changing the CSR was with the varied pulse laser, which made the CSR between the precipitates and the matrix equivalent at the higher laser pulse energies. However, at these conditions, the precipitates began to coarsen. The collective results of the CSRs are discussed in terms of field strengths related to the chemical coordination.
more »
« less
- Award ID(s):
- 1709803
- PAR ID:
- 10097801
- Date Published:
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 25
- Issue:
- 02
- ISSN:
- 1431-9276
- Page Range / eLocation ID:
- 501 to 510
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Laser-assisted atom probe tomography (APT) is a relatively new, powerful technique for sub-nanometric mineral and biomineral analysis. However, the laser-assisted APT analysis of highly anisotropic and chemically diverse minerals, such as phyllosilicates, may prove especially challenging due to the complex interaction between the crystal structure and the laser pulse upon applying a high electric field. Micas are a representative group of nonswelling clay minerals of relevance to a number of scientific and technological fields. In this study, a Mg-rich biotite was analyzed by APT to generate preliminary data on nonisotropic minerals and to investigate the effect of the crystallographic orientation on mica chemical composition and structure estimation. The difference in results obtained for specimens extracted from the (001) and (hk0) mica surfaces indicate the importance of both experimental parameters and the crystallography. Anisotropy of mica has a strong influence on the physicochemical properties of the mineral during field evaporation and the interpretation of APT data. The promising results obtained in the present study open the way to future innovative APT applications on mica and clay minerals and contribute to the general discussion on the challenges for the analysis of geomaterials by atom probe tomography.more » « less
-
null (Ed.)We report the sputter deposition of Cu-7V and Cu-27V (at.%) alloy films in an attempt to yield a “clean” alloy to investigate nanocrystalline stability. Films grown in high vacuum chambers can mitigate processing contaminates which convolute the identification of nanocrystalline stability mechanism(s). The initial films were very clean with carbon and oxygen contents ranging between ~0.01 and 0.38 at.%. Annealing at 400 °C/1 h facilitated the clustering of vanadium at high-angle grain boundary triple junctions. At 800 °C/1 h annealing, the Cu-7V film lost its nanocrystalline grain sizes with the vanadium partitioned to the free surface; the Cu-27V retained its nanocrystalline grains with vanadium clusters in the matrix, but surface solute segregation was present. Though the initial alloy and vacuum annealing retained the low contamination levels sought, the high surface area-to-volume ratio of the film, coupled with high segregation tendencies, enabled this system to phase separate in such a manner that the stability mechanisms that were to be studied were lost at high temperatures. This illustrates obstacles in using thin films to address nanocrystalline stability.more » « less
-
Aμ-oxo vanadium(V) dimeric complex, μ-oxido-bis[(2,2′-{[ethane-1,2-diylbis(azanediyl)]bis(methylene)}diphenolato)oxidovanadium(V)], [V2(C16H18N2O2)2O3] (1), was crystallized by slow evaporation from an ethanol solution. Theμ-oxo dimer crystallizes in the monoclinic space groupC2/cwhere the salan ligand1acoordinates to the vanadium center in a κ2N,κ2Ofashion, forming a distorted octahedral geometry. The bridging oxo ligand lies on a crystallographic twofold axis. The unit cell consists of four molecules of1that are linked by C—H...·πareneinteractions as well as intramolecular hydrogen bonding.more » « less
-
In this work with a model system (Ba,Ca)TiO3, we analyze the morphologies of CaTiO3-rich precipitates and their impacts on the microstructures in their surrounding BaTiO¬3-rich matrix. Also, the response of ferroelectric domains around CaTiO3-rich precipitates during heating and cooling is observed in-situ with transmission electron microscopy. Domains attached to precipitates are observed remaining unchanged up to the Curie point at which they disappear. During cooling, domains are observed to form in the vicinity of precipitates and being held in place down to room temperature. Both observations corroborate previous findings that precipitates act as domain pinning points, behaving in a similar manner to earlier experiments with electrical field biasing. Dislocations are often seen around precipitates in the matrix grain and are observed interfering with domains during heating cycles. Dislocations may provide an additional mechanism to restrict domain wall motion and offer a greater piezoelectric hardening effect.more » « less
An official website of the United States government

