skip to main content


Title: Nascent: Tackling Caller-ID Spoofing in 4G Networks via Efficient Network-Assisted Validation
Caller-ID spoofing deceives the callee into believing a call is originating from another user. Spoofing has been strategically used in the now-pervasive telephone fraud, causing substantial monetary loss and sensitive data leakage. Unfortunately, caller-ID spoofing is feasible even when user authentication is in place. State-of-the-art solutions either exhibit high overhead or require extensive upgrades, and thus are unlikely to be deployed in the near future. In this paper, we seek an effective and efficient solution for 4G (and conceptually 5G) carrier networks to detect (and block) caller-ID spoofing. Specifically, we propose Nascent, Network-assisted caller ID authentication, to validate the caller-ID used during call setup which may not match the previously-authenticated ID. Nascent functionality is split between data-plane gateways and call control session functions. By leveraging existing communication interfaces between the two and authentication data already available at the gateways, Nascent only requires small, standard-compatible patches to the existing 4G infrastructure. We prototype and experimentally evaluate three variants of Nascent in traditional and Network Functions Virtualization (NFV) deployments. We demonstrate that Nascent significantly reduces overhead compared to the state-of-the-art, without sacrificing effectiveness.  more » « less
Award ID(s):
1717493
NSF-PAR ID:
10097802
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Caller ID spoofing forges the authentic caller identity, thus making the call appear to originate from another user. This seemingly simple attack technique has been used in the growing telephony frauds and scam calls, resulting in substantial monetary loss and victim complaints. Unfortunately, caller ID spoofing is easy to launch, yet hard to defend; no effective and practical defense solutions are in place to date. In this paper, we propose CEIVE (Callee-only inference and verification), an effective and practical defense against caller ID spoofing. It is a victim callee only solution without requiring additional infrastructure support or changes on telephony systems. We formulate the design as an inference and verification problem. Given an incoming call, CEIVE leverages a callback session and its associated call signaling observed at the phone to infer the call state of the other party. It further compares with the anticipated call state, thus quickly verifying whether the incoming call comes from the originating number. We exploit the standardized call signaling messages to extract useful features, and devise call-specific verification and learning to handle diversity and extensibility. We implement CEIVE on Android phones and test it with all top four US mobile carriers, one landline and two small carriers. It shows 100% accuracy in almost all tested spoofing scenarios except one special, targeted attack case. 
    more » « less
  2. We present the demonstration of CEIVE (Callee-only inference and verification), an effective and practical defense against caller ID spoofing. CEIVE is a victim callee only solution without requiring additional infrastructure support or changes on telephony systems; It is ready to deploy and easy to use. Given an incoming call, CEIVE leverages a callback session and its associated call signaling observed at the phone to infer the call state of the other party. It further compares with the anticipated call state of the incoming call, thus quickly verifying whether the incoming call comes from the originating number or not. In this demo, we demonstrate CEIVE installed on Android phones combating both basic and advanced caller ID spoofing attacks. 
    more » « less
  3. null (Ed.)
    In recent years, biometrics (e.g., fingerprint or face recognition) has replaced traditional passwords and PINs as a widely used method for user authentication, particularly in personal or mobile devices. Differing from state-of-the-art biometrics, heart biometrics offer the advantages of liveness detection, which provides strong tolerance to spoofing attacks. To date, several authentication methods primarily focusing on electrocardiogram (ECG) have demonstrated remarkable success; however, the degree of exploration with other cardiac signals is still limited. To this end, we discuss the challenges in various cardiac domains and propose future prospectives for developing effective heart biometrics systems in real-world applications. 
    more » « less
  4. With the increasing integration of smartphones into our daily lives, fingerphotos are becoming a potential contactless authentication method. While it offers convenience, it is also more vulnerable to spoofing using various presentation attack instruments (PAI). The contactless fingerprint is an emerging biometric authentication but has not yet been heavily investigated for anti-spoofing. While existing anti-spoofing approaches demonstrated fair results, they have encountered challenges in terms of universality and scalability to detect any unseen/unknown spoofed samples. To address this issue, we propose a universal presentation attack detection method for contactless fingerprints, despite having limited knowledge of presentation attack samples. We generated synthetic contactless fingerprints using StyleGAN from live finger photos and integrating them to train a semi-supervised ResNet-18 model. A novel joint loss function, combining the Arcface and Center loss, is introduced with a regularization to balance between the two loss functions and minimize the variations within the live samples while enhancing the inter-class variations between the deepfake and live samples. We also conducted a comprehensive comparison of different regularizations’ impact on the joint loss function for presentation attack detection (PAD) and explored the performance of a modified ResNet-18 architecture with different activation functions (i.e., leaky ReLU and RelU) in conjunction with Arcface and center loss. Finally, we evaluate the performance of the model using unseen types of spoof attacks and live data. Our proposed method achieves a Bona Fide Classification Error Rate (BPCER) of 0.12%, an Attack Presentation Classification Error Rate (APCER) of 0.63%, and an Average Classification Error Rate (ACER) of 0.37%. 
    more » « less
  5. null (Ed.)
    Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes 44.5% of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. Although conventional network quantization techniques reduce the computing overhead of a base-caller by replacing floating-point multiply-accumulations by cheaper fixed-point operations, it significantly increases the number of systematic errors that cannot be corrected by read votes. The power density of prior nonvolatile memory (NVM)-based PIMs has already exceeded memory thermal tolerance even with active heat sinks, because their power efficiency is severely limited by analog-to-digital converters (ADC). Finally, Connectionist Temporal Classification (CTC) decoding and read voting cost 53.7% of total execution time in a quantized base-caller, and thus became its new bottleneck. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by 6x, throughput per Watt by 11.9x and per mm2 by 7.5x without degrading base-calling accuracy. 
    more » « less