Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we examine the challenges that service providers encounter in managing complex service function graphs, while controlling service delivery latency. Based on the lessons we learn, we outline the design of a new system, Invenio, that empowers providers to effectively place microservices without prior knowledge of service functionality. Invenio correlates user actions with the messages they trigger seen in network traces, and computes procedural affinity for communication among microservices for each user action. The procedural affinity values can then be used to make placement decisions to meet latency constraints of individual user actions. Preliminary experiments with the Clearwater IP Multimedia Subsystem demonstrate that even a single high-latency link can result in significant performance degradation, and placement with Invenio can increase user quality of experience.more » « less
-
null (Ed.)We study how to schedule data sources in a wireless time-sensitive information system with multiple heterogeneous and unreliable channels to minimize the total expected Age-of-Information (AoI). Although one could formulate this problem as a discrete-time Markov Decision Process (MDP), such an approach suffers from the curse of dimensionality and lack of insights. For single-channel systems, prior studies have developed lower-complexity solutions based on the Whittle index. However, Whittle index has not been studied for systems with multiple heterogeneous channels, mainly because indexability is not well defined when there are multiple dual cost values, one for each channel. To overcome this difficulty, we introduce new notions of partial indexability and partial index, which are defined with respect to one channel's cost, given all other channels' costs. We then combine the ideas of partial indices and max-weight matching to develop a Sum Weighted Index Matching (SWIM) policy, which iteratively updates the dual costs and partial indices. The proposed policy is shown to be asymptotically optimal in minimizing the total expected AoI, under a technical condition on a global attractor property. Extensive performance simulations demonstrate that the proposed policy offers significant gains over conventional approaches by achieving a near-optimal AoI. Further, the notion of partial index is of independent interest and could be useful for other problems with multiple heterogeneous resources.more » « less
-
null (Ed.)There has been significant interest in leveraging limited look-ahead to achieve low competitive ratios for online convex optimization (OCO). However, existing online algorithms (such as Averaging Fixed Horizon Control (AFHC)) that can leverage look-ahead to reduce the competitive ratios still produce competitive ratios that grow unbounded as the coefficient ratio (i.e., the maximum ratio of the switching-cost coefficient and the service-cost coefficient) increases. On the other hand, the regularization method can attain a competitive ratio that remains bounded when the coefficient ratio is large, but it does not benefit from look-ahead. In this paper, we propose a new algorithm, called Regularization with Look-Ahead (RLA), that can get the best of both AFHC and the regularization method, i.e., its competitive ratio decreases with the look-ahead window size when the coefficient ratio is small, and remains bounded when the coefficient ratio is large. We also provide a matching lower bound for the competitive ratios of all online algorithms with look-ahead, which differs from the achievable competitive ratio of RLA by a factor that only depends on the problem size. The competitive analysis of RLA involves a non-trivial generalization of online primal-dual analysis to the case with look-ahead.more » « less
-
null (Ed.)We propose CoRE, a 360° video streaming approach that reduces bandwidth requirements compared to transferring the entire 360° video. CoRE uses non-linear sampling in both the spatial and temporal domains to achieve robustness to view direction prediction error and to transient wireless network bandwidth fluctuation. Each CoRE frame samples the environment in all directions, with full resolution over the predicted field of view and gradually decreasing resolution at the periphery, so that missing pixels are avoided, irrespective of the view prediction error magnitude. A CoRE video chunk has a main part at full frame rate, and an extension part at a gradually decreasing frame rate, which avoids stalls while waiting for a delayed transfer. We evaluate a prototype implementation of CoRE through trace-based experiments and a user study, and find that, compared to tiling with low-resolution padding, CoRE reduces data transfer amounts, stalls, and H.264 decoding overhead, increases frame rates, and eliminates missing pixels.more » « less
-
null (Ed.)In this paper, we present RoCC, a robust congestion control approach for datacenter networks based on RDMA. RoCC leverages switch queue size as an input to a PI controller, which computes the fair data rate of flows in the queue, signaling it to the flow sources. The PI parameters are self-tuning to guarantee stability, rapid convergence, and fair and near-optimal throughput in a wide range of congestion scenarios. Our simulation and DPDK implementation results show that RoCC can achieve up to 7× reduction in PFC frames generated under high average load levels, compared to DCQCN. At the same time, RoCC can achieve up to 8× lower tail latency, compared to DCQCN and HPCC. We also find that RoCC does not require PFC. The functional components of RoCC are implementable in P4-based and fixed-function switch ASICs.more » « less
-
Cellular service carriers often employ reactive strategies to assist customers who experience non-outage related individual service degradation issues (e.g., service performance degradations that do not impact customers at scale and are likely caused by network provisioning issues for individual devices). Customers need to contact customer care to request assistance before these issues are resolved. This paper presents our experience with PACE (ProActive customer CarE), a novel, proactive system that monitors, troubleshoots and resolves individual service issues, without having to rely on customers to first contact customer care for assistance. PACE seeks to improve customer experience and care operation efficiency by automatically detecting individual (non-outage related) service issues, prioritizing repair actions by predicting customers who are likely to contact care to report their issues, and proactively triggering actions to resolve these issues. We develop three machine learning-based prediction models, and implement a fully automated system that integrates these prediction models and takes resolution actions for individual customers.We conduct a large-scale trace-driven evaluation using real-world data collected from a major cellular carrier in the US, and demonstrate that PACE is able to predict customers who are likely to contact care due to non-outage related individual service issues with high accuracy. We further deploy PACE into this cellular carrier network. Our field trial results show that PACE is effective in proactively resolving non-outage related individual customer service issues, improving customer experience, and reducing the need for customers to report their service issues.more » « less
-
We consider the task of learning a parametric Continuous Time Markov Chain (CTMC) sequence model without examples of sequences, where the training data consists entirely of aggregate steady-state statistics. Making the problem harder, we assume that the states we wish to predict are unobserved in the training data. Specifically, given a parametric model over the transition rates of a CTMC and some known transition rates, we wish to extrapolate its steady state distribution to states that are unobserved. A technical roadblock to learn a CTMC from its steady state has been that the chain rule to compute gradients will not work over the arbitrarily long sequences necessary to reach steady state —from where the aggregate statistics are sampled. To overcome this optimization challenge, we propose ∞-SGD, a principled stochastic gradient descent method that uses randomly-stopped estimators to avoid infinite sums required by the steady state computation, while learning even when only a subset of the CTMC states can be observed. We apply ∞-SGD to a real-world testbed and synthetic experiments showcasing its accuracy, ability to extrapolate the steady state distribution to unobserved states under unobserved conditions (heavy loads, when training under light loads), and succeeding in difficult scenarios where even a tailor-made extension of existing methods fails.more » « less
-
Operating distributed Scrubbing Centers (SCs) to mitigate massive Distributed Denial of Service (DDoS) traffic in large-scale networks faces critical challenges. The operator needs to determine the diversion rule installation and elimination in the networks, as well as the scrubbing resource activation and revocation in the SCs, while minimizing the long-term cost and the cumulative decision-switching penalty without knowing the exact amount of the malicious traffic. We model and formulate this problem as an online nonlinear integer program. In contrast to many other online problems where future inputs are unknown but at least current inputs are known, a key new challenge here is that even part of the current inputs are unknown when decisions are made. To learn the best decisions online, we transform our problem via a gap-preserving approximation into an online optimization problem with only the known inputs, which is further relaxed and decoupled into a series of one-shot convex programs solvable in individual time slots. To overcome the intractability, we design a progressive rounding algorithm to convert fractional decisions into integral ones without violating the constraints. We characterize the competitive ratio of our approach as a function of the key parameters of our problem. We conduct evaluations using real-world data and confirm our algorithms’ superiority over de facto practices and state-of-the-art methodsmore » « less