- Award ID(s):
- 1704176
- NSF-PAR ID:
- 10097880
- Date Published:
- Journal Name:
- IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society
- Page Range / eLocation ID:
- 901 to 906
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper presents a system for vibration and thermal energy harvesting from automobiles, and it intends to power wireless sensor nodes. Two main features of the proposed circuit are impedance matching to extract maximum power and wake-up to incorporate sleep mode. Two separate buck-boost converters in discontinuous conduction mode are used for impedance matching. A wake-up circuit senses the vibration energy generated by a piezoelectric cantilever (PZT). When a car is turned off, the wake-up circuit deactivates the two converters, and the entire circuit goes into sleep mode to save power. The proposed circuit charges a capacitor to power a wireless sensor node, and is able to cold start. The proposed circuit is prototyped with discrete components. Experimental results show that the proposed system harvests peak power of 3.4 mW and these results also demonstrate that a wireless sensor node can be powered by the proposed system.more » « less
-
Abstract A fundamental challenge in energy sustainability is efficient utilization of solar energy towards energy‐neutral systems. The current solar cell technologies have been most widely employed to achieve this goal, but are limited to a single‐layer 2D surface. To harvest solar light more efficiently, a multilayer system capable of harvesting solar light in a cuboid through transparent photothermal thin films of iron oxide and a porphyrin compound is developed. Analogous to a multilayer capacitor, an array of transparent, spectral selective, photothermal thin films allows white light to penetrate them, not only collecting photon energy in a 3D space, but generating sufficient heat on each layer with significantly increased total surface area. In this fashion, thermal energy is generated via a multilayer photothermal system that functions as an efficient solar collector, energy converter and generator with high energy density. A solar‐activated thermal energy generator that can produce heat without any power supply and reach a maximum temperature of 76.1 °C is constructed. With a constant incoming white light (0.4 W cm−2), the thermal energy generated can be amplified 12‐fold via multilayers. The multilayer system extends another dimension in solar harvesting and paves a new path to energy generation for the energy‐neutral system.
-
Abstract: This paper aims to develop a novel concept for energy harvesting via flexible inverted flags combining photovoltaic cells with piezoelectric flexible films. Using technology currently available, we have designed and fabricated piezo-pyro-photo-electric harvesters made of polyvinylidene fluoride (PVDF) piezoelectric elements combined with mini solar panels made of silicon. Experimental measurements of the motion dynamics and power generation were collected for the flags when subjected to wind, heat, and light sources simultaneously and individually. Results indicate a significant improvement in energy harvesting capability compared to isolated single piezoelectric devices. Thus, we anticipate a substantial impact of piezo- pyro-photo-electric energy harvesting device applications where remote power generation is needed. The Flag uses flexible piezoelectric and pyroelectric strips and flexible photovoltaic cells panel. The piezo-pyro- simultaneously generates power through movement and heat, respectively, while the photovoltaic cells harvest solar energy to produce electric power. The beauty of this Flag is to develop power day and night depending on the energy sources available. The basic concept is presented and validated by laboratory experiments with controlled airflow, light, and infrared heat. The maximum voltage generated was 60 mV when the Flag was simultaneously exposed to low-level wind, thermal and light energies.more » « less
-
null (Ed.)There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimental results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance.more » « less
-
null (Ed.)Abstract While solar power systems have offered a wide variety of electricity generation approaches including photovoltaics, solar thermal power systems, and solar thermoelectric generators, the ability to generate electricity at both the daytime and nighttime with no necessity of energy storage remains challenging. Here, we propose and verify an environment-friendly, sustainable, and cost-effective strategy of harvesting solar energy by solar heating during the daytime and harnessing the coldness of the outer space through radiative cooling to produce electricity at night using a commercial thermoelectric module. It enables electricity generation for 24 h a day. We experimentally demonstrate a peak power density of 37 mW/m $$^2$$ 2 at night and a peak value of 723 mW/m $$^2$$ 2 during the daytime. A theoretical model that accurately predicts the performance of the device is developed and validated. The feature of 24-h electricity generation shows great potential energy applications of off-grid and battery-free lighting and sensing.more » « less