skip to main content

Title: Zircon Xenocrysts from Cenozoic Alkaline Basalts of the Ratanakiri Volcanic Province (Cambodia), Southeast Asia—Trace Element Geochemistry, O-Hf Isotopic Composition, U-Pb and (U-Th)/He Geochronology—Revelations into the Underlying Lithospheric Mantle
Zircon xenocrysts from alkali basalts in Ratanakiri Province, Cambodia represent a unique low-Hf zircon within a 12,000 km long Indo-Pacific megacryst zone. Colorless, yellow, brown, and red crystals ({100}, {101}, subordinate {211}, {1103}), with hopper growth and corrosion features range up to 20 cm in size. Zircon chemistry indicates juvenile, Zr-saturated, mantle-derived alkaline melt (Hf 0.6–0.7 wt %, Y <0.2 wt %, U + Th + REE (Rare-Earth Elements) < 600 ppm, Zr/Hf 66–92, Eu/Eu*N ~1, positive Ce/Ce*N, HREE (Heavy REE) enrichment). Incompatible element depletion with increasing Yb/SmN from core to rim at ~ constant Hf suggests single stage growth. Ti-in-zircon temperatures (~570–740 °C) are lower than predicted by crystal morphology (800–900 °C) and decrease from core to rim (ΔT = 10–50 °C). The δ18O values (4.88 to 5.01‰ VSMOW (Vienna Standard Mean Ocean Water)) are relatively low for xenocrysts from the zircon Indo-Pacific zone (ZIP). The 176Hf/177Hf values (+ εHf 4.5–10.2) give TDepleted Mantle model source ages of 260–462 Ma and TCrustal ages of 391–754 Ma. The source magmas reflect variably depleted lithospheric mantle with little supracrustal input. Zircon U-Pb (0.88–1.56 Ma) and (U-Th)/He (0.86–1.02 Ma) ages are older than host basalt ages (~0.7 Ma), which suggests limited residence more » before transport. Zircon genesis suggests Zr-saturated, Al-undersaturated, carbonatitic-influenced, low-degree partial melting (<1%) of peridotitic mantle at ~60 km beneath the Indochina terrane. « less
Authors:
; ; ; ; ;
Award ID(s):
1524336 1658823
Publication Date:
NSF-PAR ID:
10097984
Journal Name:
Minerals
Volume:
8
Issue:
12
Page Range or eLocation-ID:
556
ISSN:
2075-163X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most metasedimentary rocks in the southern Coast Mountains batholith are of uncertain tectonic affinity because they occur in discontinuous pendants surrounded by large intrusive bodies, and many protolith features are obscured by regional deformation and metamorphism. This study uses U-Th-Pb ages and Lu-Hf isotope signatures of detrital zircons in metasedimentary rocks in Bute, Loughborough, and Knight Inlets in an effort to test possible correlations with the adjacent Wrangellia, Alexander, Taku, Yukon-Tanana, and Stikine terranes. Detrital zircons from metasedimentary samples yield ages that belong to age groups of 590-528 Ma (peak age of 560 Ma), 485-432 Ma (peak age of 452 Ma), 356-286 Ma (peakmore »age of 307 Ma), and 228-185 Ma (peak ages of 215 and 198 Ma). A small number of ~1.1-1.9 Ga grains are also present. εHft values of the 590-185 Ma grains yield a progression from intermediate (0 to +5) values to more juvenile (mostly +4 to +15) values from Neoproterozoic through early Mesozoic time. The Comparison of these results with similar data sets from adjacent terranes demonstrates that primary connections with the Yukon-Tanana and Taku terranes are unlikely but are consistent with primary connections with the Wrangellia, Stikine, and/or Alexander terranes. Unfortunately, the available constraints are not sufficient to eliminate any of these options or the possibility that the pendants are a unique tectonic fragment. Zircons from the metasedimentary samples also yield U-Th-Pb ages of 165-128 Ma (peak age of 152 Ma) and 114-88 Ma (peak age of 102 Ma). εHft values of these zircon domains are mostly juvenile (+7 to +13). Comparison of U concentrations, U/Th values, and CL textures of zircons from the metasedimentary samples, leucocratic sills that intrude the pendants, and surrounding plutonic bodies suggests that most of the young grains, as well as widespread younger rims on older grains, grew during metamorphism associated with emplacement of the adjacent plutonic bodies. Some young grains were derived from thin felsic sills or veins that were unintentionally included in the sampled material.

    « less
  2. Abstract This study addresses the question of how and where arc magmas obtain their chemical and isotopic characteristics. The Wooley Creek batholith and Slinkard pluton are a tilted, mid- to upper-crustal part of a vertically extensive, late-Jurassic, arc-related magmatic system in the Klamath Mountains, northern California. The main stage of the system is divided into an older lower zone (c. 159 Ma) emplaced as multiple sheet-like bodies, a younger upper zone (c. 158–156 Ma), which is gradationally zoned upward from mafic tonalite to granite, and a complex central zone, which represents the transition between the lower and upper zones. Xenoliths are commonmore »and locally abundant in the lower and central zones and preserve a ghost stratigraphy of the three host terranes. Bulk-rock Nd isotope data along with ages and Hf and oxygen isotope data on zircons were used to assess the location and timing of differentiation and assimilation. Xenoliths display a wide range of εNd (whole-rock) and εHf (zircon), ranges that correlate with rocks in the host terranes. Among individual pluton samples, zircon Hf and oxygen isotope data display ranges too large to represent uniform magma compositions, and very few data are consistent with uncontaminated mantle-derived magma. In addition, zoning of Zr and Hf in augite and hornblende indicates that zircon crystallized at temperatures near or below 800 °C; these temperatures are lower than emplacement temperatures. Therefore, the diversity of zircon isotope compositions reflects in situ crystallization from heterogeneous magmas. On the basis of these and published data, the system is interpreted to reflect initial MASH-zone differentiation, which resulted in elevated δ18O and lowered εHf in the magmas prior to zircon crystallization. Further differentiation, and particularly assimilation–fractional crystallization, occurred at the level of emplacement on a piecemeal (local) basis as individual magma batches interacted with partial melts from host-rock xenoliths. This piecemeal assimilation was accompanied by zircon crystallization, resulting in the heterogeneous isotopic signatures. Magmatism ended with late-stage emplacement of isotopically evolved granitic magmas (c. 156 Ma) whose compositions primarily reflect reworking of the deep-crustal MASH environment.« less
  3. Abstract Garnet–kyanite–staurolite assemblages with large, late porphyroblasts of amphibole form garbenschists in Ordovician volcaniclastic rocks lying immediately south of the Pearya terrane on northernmost Ellesmere Island, Canada. The schist, which together with carbonate olistoliths makes up the Petersen Bay Assemblage (PBA), displays a series of parallel isograds that mark an increase in metamorphic grade over a distance of 10 km towards the contact with Pearya; however, a steep, brittle Cenozoic strike-slip fault with an unknown amount displacement disturbs the earlier accretionary relationship. The late amphibole growth, probably due to fluid ingress, is clear evidence of disequilibrium conditions in the garbenschist. Inmore »order to recover the P–T history of the schists, we construct isochemical phase equilibrium models for a nearby garnet–mica schist that escaped the fluid event and compare the results to quartz inclusion in garnet (QuiG) barometry for a garbenschist and the metapelitic garnet schist. Quartz inclusions are confined to garnet cores and the QuiG results, combined with Ti-in-biotite and garnet–biotite thermometry, delineate a prograde path from 480 to 600°C and 0.7 to 0.9 GPa. This path agrees with growth zoning in garnet deduced from X-ray maps of the spessartine component in garnet. The peak conditions obtained from pseudosection modelling using effective bulk composition and the intersection of garnet rim with matrix biotite and white mica isopleths in the metapelite are 665°C at ≤0.85 GPa. Three generations of monazite (I, II and III) were identified by textural characterization, geochemical composition (REE and Y concentrations) and U–Pb ages measured by ion microprobe. Monazite I occurs in the matrix and as inclusions in garnet rims and grew at peak P–T conditions at 397 ± 2 Ma (2σ) from the breakdown of allanite. Monazite II forms overgrowths on matrix Monazite I grains that are oriented parallel to the main schistosity and yield ages of 385 ± 2 Ma. Monazite III, found only in the garbenschist, is 374 ± 6 Ma, which is interpreted as the time of amphibole growth during fluid infiltration at lower temperature and pressure on a clockwise P–T path that remained in the kyanite stability field. These results point to a relatively short (≈12 Myr) Barrovian metamorphic event that affected the schists of the PBA. An obvious heat source is lacking in the adjacent Pearya terrane, but we speculate it was large Devonian plutons—similar to the 390 ± 10 Ma Cape Woods granite located 40 km across strike from the fault—that have been excised by strike-slip. Arc fragments that are correlative to the PBA are low grade; they never saw the heat and were not directly involved in Pearya accretion.« less
  4. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denalimore »fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates.« less
  5. Abstract Our study used zircon (U-Th)/He (ZHe) thermochronology to resolve cooling events of Precambrian basement below the Great Unconformity surface in the eastern Grand Canyon, United States. We combined new ZHe data with previous thermochronometric results to model the <250 °C thermal history of Precambrian basement over the past >1 Ga. Inverse models of ZHe date-effective uranium (eU) concentration, a relative measure of radiation damage that influences closure temperature, utilize He diffusion and damage annealing and suggest that the main phase of Precambrian cooling to <200 °C was between 1300 and 1250 Ma. This result agrees with mica and potassiummore »feldspar 40Ar/39Ar thermochronology showing rapid post–1400 Ma cooling, and both are consistent with the 1255 Ma depositional age for the Unkar Group. At the young end of the timescale, our data and models are also highly sensitive to late-stage reheating due to burial beneath ∼3–4 km of Phanerozoic strata prior to ca. 60 Ma; models that best match observed date-eU trends show maximum temperatures of 140–160 °C, in agreement with apatite (U-Th)/He and fission-track data. Inverse models also support multi-stage Cenozoic cooling, with post–20 Ma cooling from ∼80 to 20 °C reflecting partial carving of the eastern Grand Canyon, and late rapid cooling indicated by 3–7 Ma ZHe dates over a wide range of high eU. Our ZHe data resolve major basement exhumation below the Great Unconformity during the Mesoproterozoic (1300–1250 Ma), and “young” (20–0 Ma) carving of Grand Canyon, but show little sensitivity to Neoproterozoic and Cambrian basement unroofing components of the composite Great Unconformity.« less