We observe novel composite particles -- chiral excitons -- residing on the surface of a topological insulator (TI), Bi_2Se_3. Unlike other known excitons composed of massive quasiparticles, chiral excitons are the bound states of surface massless electrons and surface massive holes, both subject to strong spin-orbit coupling which locks their spins and momenta into chiral textures. Due to this unusual feature, chiral excitons emit circularly polarized secondary light (photoluminescence) that conserves the polarization of incident light. This means that the out-of-plane angular momentum of a chiral excitonis preserved against scattering events during thermalization, thus enabling optical orientation of carriers even at room temperature. The discovery of chiral excitons adds to the potential of TIs as a platform for photonics and optoelectronics devices.
more »
« less
Observation of chiral surface excitons in a topological insulator Bi 2 Se 3
The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI, B i 2 S e 3 . Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.
more »
« less
- Award ID(s):
- 1709161
- PAR ID:
- 10097985
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 10
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 4006 to 4011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Heterobilayers of transition metal dichalcogenides (TMDCs) can form a moiré superlattice with flat minibands, which enables strong electron interaction and leads to various fascinating correlated states. These heterobilayers also host interlayer excitons in a type-II band alignment, in which optically excited electrons and holes reside on different layers but remain bound by the Coulomb interaction. Here we explore the unique setting of interlayer excitons interacting with strongly correlated electrons, and we show that the photoluminescence (PL) of interlayer excitons sensitively signals the onset of various correlated insulating states as the band filling is varied. When the system is in one of such states, the PL of interlayer excitons is relatively amplified at increased optical excitation power due to reduced mobility, and the valley polarization of interlayer excitons is enhanced. The moiré superlattice of the TMDC heterobilayer presents an exciting platform to engineer interlayer excitons through the periodic correlated electron states.more » « less
-
Abstract The presence of in-plane chiral effects, hence spin–orbit coupling, is evident in the changes in the photocurrent produced in a TiS 3 (001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin–orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS 3 is n-type and has an electron mobility in the range of 1–6 cm 2 V −1 s −1 . I – V measurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS 3 contains no heavy elements, the presence of spin–orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS 3 (001) surface.more » « less
-
In the present work we theoretically analyze electroluminescence occurring in a biased single-molecule junction with a chiral bridge imitated by a helical chain. We show that optical transitions between electron states of the chiral linker may result in the emission of circular polarized light whose handedness depends on both direction of propagation and the polarity of the bias voltage provided that the coupling between the bridge sites is sufficiently strong. The mechanism controlling this specific light emission does not depend on the magnetic moments and spin–orbit interactions. It rather relies on the chiral properties of the bridge molecule and on the distribution of the bias voltage between the electrodes in the junction.more » « less
-
Spin polarization in chiral molecules is a magnetic molecular response associated with electron transport and enantioselective bond polarization that occurs even in the absence of an external magnetic field. An unexpected finding by Santos and co-workers reported enantiospecific NMR responses in solid-state cross-polarization (CP) experiments, suggesting a possible additional contribution to the indirect nuclear spin-spin coupling in chiral molecules induced by bond polarization in the presence of spin-orbit coupling. Herein we provide a theoretical treatment for this phenomenon, presenting an effective spin-Hamiltonian for helical molecules like DNA and density functional theory (DFT) results on amino acids that confirm the dependence of J-couplings on the choice of enantiomer. The connection between nuclear spin dynamics and chirality could offer insights for molecular sensing and quantum information sciences. These results establish NMR as a potential tool for chiral discrimination without external agents.more » « less
An official website of the United States government

