skip to main content


Title: Uplift and exhumation of the Russell Fiord and Boundary blocks along the northern Fairweather transform fault, Alaska
Cooling ages of tectonic blocks between the Yakutat microplate and the Fairweather transform boundary fault reveal exhumation due to strike-slip faulting and subsequent collision into this tectonic corner. The Yakutat and Boundary faults are splay faults that define tectonic panels with bounding faults that have evidence of both reverse and strike-slip motion, and they are parallel to the northern end of the Fairweather fault. Uplift and exhumation simultaneous with strike-slip motion have been significant since the late Miocene. The blocks are part of an actively deforming tectonic corner, as indicated by the ~14–1.5 m of coseismic uplift from the M 8.1 Yakutat Bay earthquake of 1899 and 4 m of strike-slip motion in the M 7.9 Lituya Bay earthquake in 1958 along the Fairweather fault. New apatite (U-Th-Sm)/He (AHe) and zircon (U-Th)/He (ZHe) data reveal that the Boundary block and the Russell Fiord block have different cooling histories since the Miocene, and thus the Boundary fault that separates them is an important tectonic boundary. Upper Cretaceous to Paleocene flysch of the Russell Fiord block experienced a thermal event at 50 Ma, then a relatively long period of burial until the late Miocene when initial exhumation resulted in ZHe ages between 7 and 3 Ma, and then very rapid exhumation in the last 1–1.5 m.y. Exhumation of the Russell Fiord block was accommodated by reverse faulting along the Yakutat fault and the newly proposed Calahonda fault, which is parallel to the Yakutat fault. The Eocene schist of Nunatak Fiord and 54–53 Ma Mount Stamy and Mount Draper granites in the Boundary block have AHe and ZHe cooling ages that indicate distinct and very rapid cooling between ca. 5 Ma and ca. 2 Ma. Rocks of the Chugach Metamorphic Complex to the northeast of the Fairweather fault and in the fault zone were brought up from 10–12 km at extremely high rates (>5 km/m.y.) since ca. 3 Ma, which implies a significant component of dip-slip motion along the Fairweather fault. The adjacent rocks of the Boundary block were exhumed with similar rates and from similar depths during the early Pliocene, when they may have been located 220–250 km farther south near Baranof Island. The profound and significant exhumation of the three tectonic blocks in the last 5 m.y. has probably been driven by uplift and erosional exhumation due to contraction as rocks collide into this tectonic corner. The documented spatial and temporal pattern of exhumation is in agreement with the southward shift of focused exhumation at the St. Elias syntaxial corner and the southeast propagation of the fold-and thrust belt.  more » « less
Award ID(s):
1728013
NSF-PAR ID:
10098285
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Lithosphere
Volume:
11
Issue:
2
ISSN:
1941-8264
Page Range / eLocation ID:
232-251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks with geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates. 
    more » « less
  2. The Mesozoic–Cenozoic convergent margin history of southern Alaska has been dominated by arc magmatism, terrane accretion, strike-slip fault systems, and possible spreading-ridge subduction. We apply 40Ar/39Ar, apatite fission-track (AFT), and apatite (U-Th)/He (AHe) geochronology and thermochronology to plutonic and volcanic rocks in the southern Talkeetna Mountains of Alaska to document regional magmatism, rock cooling, and inferred exhumation patterns as proxies for the region’s deformation history and to better delineate the overall tectonic history of southern Alaska. High-temperature 40Ar/39Ar thermochronology on muscovite, biotite, and K-feldspar from Jurassic granitoids indicates postemplacement (ca. 158–125 Ma) cooling and Paleocene (ca. 61 Ma) thermal resetting. 40Ar/39Ar whole-rock volcanic ages and 45 AFT cooling ages in the southern Talkeetna Mountains are predominantly Paleocene–Eocene, suggesting that the mountain range has a component of paleotopography that formed during an earlier tectonic setting. Miocene AHe cooling ages within ~10 km of the Castle Mountain fault suggest ~2–3 km of vertical displacement and that the Castle Mountain fault also contributed to topographic development in the Talkeetna Mountains, likely in response to the flat-slab subduction of the Yakutat microplate. Paleocene–Eocene volcanic and exhumation-related cooling ages across southern Alaska north of the Border Ranges fault system are similar and show no S-N or W-E progressions, suggesting a broadly synchronous and widespread volcanic and exhumation event that conflicts with the proposed diachronous subduction of an active west-east–sweeping spreading ridge beneath south-central Alaska. To reconcile this, we propose a new model for the Cenozoic tectonic evolution of southern Alaska. We infer that subparallel to the trench slab breakoff initiated at ca. 60 Ma and led to exhumation, and rock cooling synchronously across south-central Alaska, played a primary role in the development of the southern Talkeetna Mountains, and was potentially followed by a period of southern Alaska transform margin tectonics. 
    more » « less
  3. The uplift history of the Sierra Nevada, California, is a topic of long-standing disagreement with much of it centered on the timing and nature of slip along the range-bounding normal fault along the east flank of the southern Sierra Nevada. The history of normal fault slip is important for characterizing the uplift history of the Sierra Nevada, as well as for characterizing the geologic and geodynamic factors that drove, and continue to drive, normal faulting. To address these issues, we completed new structural studies and extensive apatite (U-Th)/He (AHe) thermochronometry on samples collected from three vertical transects in the footwall to the east-dipping southern Sierra Nevada normal fault (SNNF). Our structural studies on bedrock fault planes show that the SNNF is a steeply (~70°) east-dipping normal fault. The new AHe data reveal two elevation-invariant AHe age arrays, indicative of two distinct periods of cooling and exhumation, which we interpret as initiation of normal faulting along the SNNF at ca. 28–27 Ma with a second phase of normal faulting at ca. 17–13 Ma. We argue that beginning in the late Oligocene, the SNNF marked the now long-standing stable western limit, or break-away zone, of the Basin and Range. Slip along SNNF, and the associated unloading of the footwall, likely resulted in two periods of uplift of Sierra Nevada during the late Cenozoic. Trench retreat, driven by westward motion of the North American plate, along the Farallon–North American subduction zone boundary, as well as the gravitationally unstable northern and southern Basin and Range pushing on the cold Sierra Nevada, likely drove the late Oligocene- aged normal slip along the SNNF and the similar-aged but generally local and minor extension within the Basin and Range. We posit that the thick proto–Basin and Range lithosphere was primed for late Oligocene extension by replacement of the steepening Farallon slab with hot and buoyant asthenosphere. While steepening of the Farallon slab had not yet reached the southern Sierra Nevada by late Oligocene time, we speculate that late Oligocene slip along the SNNF reactivated a late Cretaceous dextral shear zone as the Sierra Nevada block was pulled and pushed westward in response to trench retreat and gravitational potential energy. The dominant middle Miocene normal fault-slip history along the SNNF is contemporaneous with high-magnitude slip recorded along range-bounding normal faults across the Basin and Range, including the east-adjacent Inyo and White mountains, indicating that this period of extension was a major regional tectonic event. We infer that a combination of slab-driven trench retreat along the Juan de Fuca–North America subduction zone boundary and clockwise rotation of the southern ancestral Cascade Range superimposed on continental lithosphere pre-conditioned for extension drove this episode of middle Miocene normal slip along the SNNF and extension to the east across the Basin and Range. Transtensional plate motion along the Pacific–North America plate boundary, and likely a growing slab window, continued to drive extension along the SNNF and the western Basin and Range, but not until ca. 11 Ma when the Mendocino triple junction reached the latitude of our northernmost (U-Th)/He transect. 
    more » « less
  4. null (Ed.)
    The topographic development of the Sierra Nevada, CA has been the topic of research for more than 100 years, yet disagreement remains as to whether 1) the Sierra Nevada records uplift in the late Mesozoic followed by no change or a decrease in elevation throughout the Cenozoic vs 2) uplift in the late Mesozoic followed by a decrease in elevation during the middle Cenozoic, and a second pulse of uplift in the late Cenozoic. The second pulse of uplift in the late Cenozoic is linked to late Cenozoic normal slip along the southern Sierra Nevada (SSN) range front normal fault (SSNF). To test this fault slip hypothesis, we report apatite (U-Th/He) (AHe) results from samples in the footwall of the SSNF collected along three vertical transects (from north to south, RV, MW, and MU) up the eastern escarpment of the SSN. Here, exposed bedrock fault planes and associated joints yield nearly identical strike-dip values of ~356°-69°NE. At the RV transect, 14 AHe samples record an elevation invariant mean age of 17.8 ± 5.3 Ma over a vertical distance of 802 m. At MW, 14 samples collected over a vertical distance of 1043 m yield an elevation invariant mean age of 26.6 ± 5.0 Ma. At MU, 8 samples record an elevation invariant mean age of 12.7 ± 3.7 Ma over a vertical distance of 501 m and 5 higher elevation samples record an elevation invariant mean age of 26.5 ± 3.3 Ma. At MU, the lowest elevation sample yielded an AFT age of 50 Ma and mean track length of 13.1 microns. Preliminary HeFTy modeling of the AHe and AFT ages from this sample yield accelerated cooling at ~22 Ma and ~10 Ma. Preliminary modeling (Pecube + landscape evolution) of the MU AHe results, elevation, and a prominent knickpoint yield an increase in fault slip rate at ~1-2 Ma. We interpret the elevation invariant ages and modeling results as indicating three periods—late Oligocene, middle Miocene, and Pliocene—of cooling and exhumation in the footwall of the SSNF due to normal fault slip. Our results are the first to document late Oligocene to Pliocene cooling and normal slip along the SSNF. Miocene and Pliocene age normal fault slip along the SSNF is contemporaneous with normal slip along range bounding faults across the Basin and Range, including the adjacent Inyo and White Mountains. Combined, these data indicate that since the late Oligocene the SSN defined the stable western limit of the Basin and Range. 
    more » « less
  5. We interpret the kinematics of the Tangra Yumco (TYC) rift by evaluating spatiotemporal trends in fault displacement, extension onset, and exhumation rates. We present new geologic mapping, U-Pb geochronology, zircon (U-Th)/He (ZHe) thermochronology, and HeFTy thermal modeling results that are critical to testing dynamic models of extension in Tibet. The TYC rift is bounded by two NNE striking (~N10°E-N35°E) high angle (~45-70°) active normal faults that alternate dominance along strike. Footwall granodiorites show foliation, slip lineation, and fault plane striation measurements indicative of northeast directed oblique sinistral-normal slip. In North and South TYC, hanging wall deposits are cut by a series of active high-angle normal faults which likely sole into a master fault at depth, while in central TYC, hanging wall deposits display synthetic graben structures potentially indicative of low-angle faulting. Analysis of ~50 samples collected across key structural relationships in and around TYC yield 14 mean U-Pb dates between ~59-49 Ma and ~190 single-grain ZHe dates between ~60-4 Ma with spatial trends in ZHe data correlating strongly with latitude. Samples from Gangdese latitudes show a concentration of ~28-15 Ma ages, while those north of ~29.8° latitude yield both younger (~9-4 Ma) and older (~59-45 Ma) ages. We interpret (1) Gangdese Range samples reflect exhumation during contraction and uplift along the GCT peaking at ~21-20 Ma, (2) ~9-4 Ma ages reveal extension timing along fault segments experiencing significant rift-related exhumation, and (3) ~59-45 Ma ages represent un-reset or partially-reset samples from fault segments that have experienced lesser magnitudes of rift exhumation. HeFTy thermal models indicate a two-stage cooling history with initial slow cooling followed by accelerated cooling rates in Late Miocene-Pliocene time (~13-4 Ma) consistent with prior results from TYC and other Tibetan rifts. Our data are consistent with a segment linkage fault evolution model for the TYC rift, with underthrusting of Indian lithosphere likely related to the northward acceleration of rifting. Future work will utilize advanced HeFTy modeling including U-Pb and apatite fission track data to further constrain the exhumation history of TYC and test dynamic models of extension for southern Tibet. 
    more » « less