skip to main content


Title: Kinematic Evolution of the Tangra Yumco Rift, South-Central Tibet
We interpret the kinematics of the Tangra Yumco (TYC) rift by evaluating spatiotemporal trends in fault displacement, extension onset, and exhumation rates. We present new geologic mapping, U-Pb geochronology, zircon (U-Th)/He (ZHe) thermochronology, and HeFTy thermal modeling results that are critical to testing dynamic models of extension in Tibet. The TYC rift is bounded by two NNE striking (~N10°E-N35°E) high angle (~45-70°) active normal faults that alternate dominance along strike. Footwall granodiorites show foliation, slip lineation, and fault plane striation measurements indicative of northeast directed oblique sinistral-normal slip. In North and South TYC, hanging wall deposits are cut by a series of active high-angle normal faults which likely sole into a master fault at depth, while in central TYC, hanging wall deposits display synthetic graben structures potentially indicative of low-angle faulting. Analysis of ~50 samples collected across key structural relationships in and around TYC yield 14 mean U-Pb dates between ~59-49 Ma and ~190 single-grain ZHe dates between ~60-4 Ma with spatial trends in ZHe data correlating strongly with latitude. Samples from Gangdese latitudes show a concentration of ~28-15 Ma ages, while those north of ~29.8° latitude yield both younger (~9-4 Ma) and older (~59-45 Ma) ages. We interpret (1) Gangdese Range samples reflect exhumation during contraction and uplift along the GCT peaking at ~21-20 Ma, (2) ~9-4 Ma ages reveal extension timing along fault segments experiencing significant rift-related exhumation, and (3) ~59-45 Ma ages represent un-reset or partially-reset samples from fault segments that have experienced lesser magnitudes of rift exhumation. HeFTy thermal models indicate a two-stage cooling history with initial slow cooling followed by accelerated cooling rates in Late Miocene-Pliocene time (~13-4 Ma) consistent with prior results from TYC and other Tibetan rifts. Our data are consistent with a segment linkage fault evolution model for the TYC rift, with underthrusting of Indian lithosphere likely related to the northward acceleration of rifting. Future work will utilize advanced HeFTy modeling including U-Pb and apatite fission track data to further constrain the exhumation history of TYC and test dynamic models of extension for southern Tibet.  more » « less
Award ID(s):
1917685
NSF-PAR ID:
10485769
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
AGU Fall Meeting 2022, held in Chicago, IL, 12-16 December 2022, id. T25B-06.
Format(s):
Medium: X
Location:
San Francisco, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Carosi, Rodolfo ; da Costa Campos Neto, Mario ; Fossen, Hakkon ; Montomoli, Chiara ; Simonetti, Matteo ; Martinez-Frias, Jesus (Ed.)
    North-trending rifts throughout south-central Tibet provide an opportunity to study the dynamics of synconvergent extension in contractional orogenic belts. In this study, we present new data from the Dajiamang Tso rift, including quantitative crustal thickness estimates calculated from trace/rare earth element zircon data, U-Pb geochronology, and zircon-He thermochronology. These data constrain the timing and rates of exhumation in the Dajiamang Tso rift and provide a basis for evaluating dynamic models of synconvergent extension. Our results also provide a semi-continuous record of Mid-Cretaceous to Miocene evolution of the Himalayan-Tibetan orogenic belt along the India-Asia suture zone. We report igneous zircon U-Pb ages of ~103 Ma and 70–42 Ma for samples collected from the Xigaze forearc basin and Gangdese Batholith/Linzizong Formation, respectively. Zircon-He cooling ages of forearc rocks in the hanging wall of the Great Counter thrust are ~28 Ma, while Gangdese arc samples in the footwalls of the Dajiamang Tso rift are 16–8 Ma. These data reveal the approximate timing of the switch from contraction to extension along the India-Asia suture zone (minimum 16 Ma). Crustal-thickness trends from zircon geochemistry reveal possible crustal thinning (to ~40 km) immediately prior to India-Eurasia collision onset (58 Ma). Following initial collision, crustal thickness increases to 50 km by 40 Ma with continued thickening until the early Miocene supported by regional data from the Tibetan Magmatism Database. Current crustal thickness estimates based on geophysical observations show no evidence for crustal thinning following the onset of E–W extension (~16 Ma), suggesting that modern crustal thickness is likely facilitated by an underthrusting Indian lithosphere balanced by upper plate extension. 
    more » « less
  2. The Bengal Fan is the world’s largest submarine fan deposit by area, and fan sediments preserve a faithful record of Tibetan-Himalayan orogenesis since Early Miocene time. This study uses detrital zircon (U-Th)/He (ZHe) thermochronology, U-Pb and ZHe double-dating, and sediment mixing models to characterize shifts in provenance and erosional history of the Himalaya and Tibet recorded by Bengal Fan sediments from Late Miocene to Late Pleistocene time, with emphasis on the Pliocene-Pleistocene interglacial transition. Zircon grains are collected from sediment cores acquired during IODP Expedition 354 (2015). A total of 157 single zircon grains from 25 samples of sandy and silty turbidites will be analyzed for single ZHe analyses (an average of 8 grains per sample), and ~50 zircon grains will be chosen for double-dating with U-Pb geochronology. In turn, all ZHe results will be compared with large-n (n=300-600) U-Pb age distributions from the same samples. Sediment mixing models will determine potential source regions for individual samples by “unmixing” crystallization and cooling age populations present in each sample. Preliminary results (n=84) show shifts in the range of cooling ages from ~5.9-45 Ma in the Late Miocene, with a single grain at ~233 Ma, to ~2.5-410 Ma in the Late Pliocene, and finally ~0.5-20 Ma in the Early-Middle Pleistocene, with a single grain at ~492 Ma. These results indicate shifts in source contributions from central-East Himalaya in the Late Miocene, to a Lesser and Tethyan Himalaya source in the Late Pliocene, to a predominantly Eastern Tibet and Lhasa terrane source in the Late Pleistocene in tandem with a broad increase in exhumation rates. We attribute these variations in cooling age ranges to change in sediment source terrains for the Ganges and Brahmaputra River system. Ongoing work seeks to further refine sediment mixing models for the Ganges-Brahmaputra-Bengal Fan system in tandem with large-n U-Pb geochronologic efforts. 
    more » « less
  3. Abstract

    Zircon (U-Th)/He (ZHe) dates are presented from eight samples (n=55) collected from three ranges including the Carrizo and Franklin Mountains in western Texas and the Cookes Range in southern New Mexico. ZHe dates from Proterozoic crystalline rocks range from 6 to 731 Ma in the Carrizo Mountains, 19 to 401 Ma in the Franklin Mountains, and 63 to 446 Ma in the Cookes Range, and there is a negative correlation with eU values. These locations have experienced a complex tectonic history involving multiple periods of uplift and reburial, and we use a combination of forward and inverse modeling approaches to constrain plausible thermal histories. Our final inverse models span hundreds of millions of years and multiple tectonic events and lead to the following conclusions: (1) Proterozoic exhumation occurred from 800 to 500 Ma, coinciding with the break-up of Rodinia; (2) elevated temperatures at approximately 100 Ma occurred during final development of the Bisbee basin and are a likely result of elevated heat flow in the upper crust during continental rifting; (3) a pulse of cooling associated with Laramide shortening is observed from 70 to 45 Ma in the Cooks Range and 80 to 50 Ma in the Franklin Mountains, whereas the Carrizo Mountains were largely unaffected by this event; and (4) final cooling to near-surface temperatures began 30–25 Ma at all three locations and was likely a result of Rio Grande rift extension. These data help to bridge the gap between higher and lower temperature isotopic systems to constrain complex thermal histories in tectonically mature regions.

     
    more » « less
  4. null (Ed.)
    ABSTRACT The stratigraphic record of Cenozoic uplift and denudation of the Himalayas is distributed across its peripheral foreland basins, as well as in the sediments of the Ganges–Brahmaputra Delta (GBD) and the Bengal–Nicobar Fan (BNF). Recent interrogation of Miocene–Quaternary sediments of the GBD and BNF advance our knowledge of Himalayan sediment dispersal and its relationship to regional tectonics and climate, but these studies are limited to IODP boreholes from the BNF (IODP 354 and 362, 2015-16) and Quaternary sediment cores from the GBD (NSF-PIRE: Life on a tectonically active delta, 2010-18). We examine a complementary yet understudied stratigraphic record of the Miocene–Pliocene ancestral Brahmaputra Delta in outcrops of the Indo-Burman Ranges fold–thrust belt (IBR) of eastern India. We present detailed lithofacies assemblages of Neogene delta plain (Tipam Group) and intertidal to upper-shelf (Surma Group) deposits of the IBR based on two ∼ 500 m stratigraphic sections. New detrital-apatite fission-track (dAFT) and (U-Th)/He (dAHe) dates from the Surma Group in the IBR help to constrain maximum depositional ages (MDA), thermal histories, and sediment accumulation rates. Three fluvial facies (F1–F3) and four shallow marine to intertidal facies (M1–M4) are delineated based on analog depositional environments of the Holocene–modern GBD. Unreset dAFT and dAHe ages constrain MDA to ∼ 9–11 Ma for the Surma Group, which is bracketed by intensification of turbidite deposition on the eastern BNF (∼ 13.5–6.8 Ma). Two dAHe samples yielded younger (∼ 3 Ma) reset ages that we interpret to record cooling from denudation following burial resetting due to a thicker (∼ 2.2–3.2 km) accumulation of sediments near the depocenter. Thermal modeling of the dAFT and dAHe results using QTQt and HeFTy suggest that late Miocene marginal marine sediment accumulation rates may have ranged from ∼ 0.9 to 1.1 mm/yr near the center of the paleodelta. Thermal modeling results imply postdepositional cooling beginning at ∼ 8–6.5 Ma, interpreted to record onset of exhumation associated with the advancing IBR fold belt. The timing of post-burial exhumation of the IBR strata is consistent with previously published constraints for the avulsion of the paleo-Brahmaputra to the west and a westward shift of turbidite deposition on the BNF that started at ∼ 6.8 Ma. Our results contextualize tectonic controls on basin history, creating a pathway for future investigations into autogenic and climatic drivers of behavior of fluvial systems that can be extracted from the stratigraphic record. 
    more » « less
  5. Evaluating spatial and temporal patterns of rifting is an essential step towards disentangling the complex tectonic evolution of southern Tibet from Oligocene to Miocene time. Here we examine spatial trends in thermochronology data for two classes of rifts: Tibetan rifts that are generally >150 km in length and crosscut the Lhasa Terrane, and Gangdese rifts that are typically <50 km long and isolated within the high topography of the Gangdese Range. Analysis of compiled ZHe data from two Tibetan rifts and three Gangdese rifts suggests initiation along Tibetan rifts occurred between ~19-14 Ma, consistent with previous studies that interpret a northward sweep of extension onset related to northward underthrusting of the Indian plate. Conversely, results indicate Gangdese rift initiation at around ~28 Ma, prior to the recent episode of India underthrusting beginning at ~20 Ma. We suggest Gangdese rift initiation was driven by exhumation and uplift of the Gangdese Range, with ZHe ages overlapping timing estimates for contraction along the Great Counter Thrust from ~28-16 Ma. These results suggest the interactions and feedbacks between contractional and extensional structures in southern Tibet are more complex than previously recognized. 
    more » « less