skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Family quarrels in seeds and rapid adaptive evolution in Arabidopsis
Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host−pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis . As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.  more » « less
Award ID(s):
1656756 1753743
PAR ID:
10098297
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
ISSN:
0027-8424
Page Range / eLocation ID:
201817733
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Evolutionary conflict and arms races are important drivers of evolution in nature. During arms races, new abilities in one party select for counterabilities in the second party. This process can repeat and lead to successive fixations of novel mutations, without a long‐term increase in fitness. Models of co‐evolution rarely address successive fixations, and one of the main models that use successive fixations—Fisher's geometric model—does not address co‐evolution. We address this gap by expanding Fisher's geometric model to the evolution of joint phenotypes that are affected by two parties, such as probability of infection of a host by a pathogen. The model confirms important intuitions and offers some new insights. Conflict can lead to long‐term Sisyphean arms races, where parties continue to climb toward their fitness peaks, but are dragged back down by their opponents. This results in far more adaptive evolution compared to the standard geometric model. It also results in fixation of mutations of larger effect, with the important implication that the common modeling assumption of small mutations will apply less often under conflict. Even in comparison with random abiotic change of the same magnitude, evolution under conflict results in greater distances from the optimum, lower fitness, and more fixations, but surprisingly, not larger fixed mutations. We also show how asymmetries in selection strength, mutation size, and mutation input allow one party to win over another. However, winning abilities come with diminishing returns, helping to keep weaker parties in the game. 
    more » « less
  2. Cooperatively breeding vertebrates typically live in family groups in which some offspring delay breeding and remain on the natal territory to help rear younger siblings. However, field studies find that helpers can have a neutral or even negative effect on the survival of their relatives. Why, then, do helpers remain, and why do parents tolerate them? Here, we use a kin selection approach to model the conditions under which tolerating helpers is adaptive to parents. Unlike previous models, we consider scenarios in which relatives compete for breeding opportunities in a saturated habitat. We show that kin competition is sufficient to favour tolerance of helpers, even when helpers decrease parental survival or fecundity. Helping is additionally favoured when delaying dispersal benefits the helper (either by decreasing the costs of dispersal or by increasing the chance of territory inheritance). This suggests that the division of reproduction in cooperative family groups can emerge for reasons unrelated to the effects of help itself, but the resulting society sets the stage for more elaborate forms of division of labour. Kin-based helping may therefore be adaptive not only because helpers are related to the brood whom they help, but also because delayed breeding reduces reproductive conflict among siblings. This article is part of the theme issue ‘Division of labour as a key driver of social evolution’. 
    more » « less
  3. Abstract Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors – such as aggression – have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species. 
    more » « less
  4. Abstract Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. InDrosophilahybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation inDrosophila willistoniand analyse the patterns of transcriptome divergence between two allopatrically evolvedD. willistonisubspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue‐specific. Despite no indication for cell‐type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo‐ and the ancestral arms of theD. willistoni Xchromosome. Compared to the autosomes, theXchromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue‐level portrait of transcriptome differentiation between recently divergedD. willistonisubspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation. 
    more » « less
  5. Malik, Harmit S. (Ed.)
    Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system. Here, we test the selfish model of centromere evolution in a yellow monkeyflower ( Mimulus guttatus ) population polymorphic for a costly driving centromere ( D ). We show that the D haplotype is structurally and genetically distinct and swept to a high stable frequency within the past 1500 years. We use quantitative genetic mapping to demonstrate that context-dependence in the strength of drive (from near-100% D transmission in interspecific hybrids to near-Mendelian in within-population crosses) primarily reflects variable vulnerability of the non-driving competitor chromosomes, but also map an unlinked modifier of drive coincident with kinetochore protein Centromere-specific Histone 3 A (CenH3A). Finally, CenH3A exhibits a recent (<1000 years) selective sweep in our focal population, implicating local interactions with D in ongoing adaptive evolution of this kinetochore protein. Together, our results demonstrate an active co-evolutionary arms race between DNA and protein components of the meiotic machinery in Mimulus , with important consequences for individual fitness and molecular divergence. 
    more » « less