skip to main content


Title: Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings
Online texts—across genres, registers, domains, and styles—are riddled with human stereotypes, expressed in overt or subtle ways. Word embeddings, trained on these texts, perpetuate and amplify these stereotypes, and propagate biases to machine learning models that use word embeddings as features. In this work, we propose a method to debias word embeddings in multiclass settings such as race and religion, extending the work of (Bolukbasi et al., 2016) from the binary setting, such as binary gender. Next, we propose a novel methodology for the evaluation of multiclass debiasing. We demonstrate that our multiclass debiasing is robust and maintains the efficacy in standard NLP tasks.  more » « less
Award ID(s):
1812327
NSF-PAR ID:
10098353
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As natural language processing methods are increasingly deployed in real-world scenarios such as healthcare, legal systems, and social science, it becomes necessary to recognize the role they potentially play in shaping social biases and stereotypes. Previous work has revealed the presence of social biases in widely used word embeddings involving gender, race, religion, and other social constructs. While some methods were proposed to debias these word-level embeddings, there is a need to perform debiasing at the sentence-level given the recent shift towards new contextualized sentence representations such as ELMo and BERT. In this paper, we investigate the presence of social biases in sentence-level representations and propose a new method, Sent-Debias, to reduce these biases. We show that Sent-Debias is effective in removing biases, and at the same time, preserves performance on sentence-level downstream tasks such as sentiment analysis, linguistic acceptability, and natural language understanding. We hope that our work will inspire future research on characterizing and removing social biases from widely adopted sentence representations for fairer NLP. 
    more » « less
  2. Contextual word embeddings such as BERT have achieved state of the art performance in numerous NLP tasks. Since they are optimized to capture the statistical properties of training data, they tend to pick up on and amplify social stereotypes present in the data as well. In this study, we (1) propose a template-based method to quantify bias in BERT; (2) show that this method obtains more consistent results in capturing social biases than the traditional cosine based method; and (3) conduct a case study, evaluating gender bias in a downstream task of Gender Pronoun Resolution. Although our case study focuses on gender bias, the proposed technique is generalizable to unveiling other biases, including in multiclass settings, such as racial and religious biases. 
    more » « less
  3. Word vector embeddings have been shown to contain and amplify biases in the data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we present the Visualization of Embedding Representations for deBiasing (“VERB”) system, an open-source web-based visualization tool that helps users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their geometric properties. In particular, VERB offers easy-to-follow examples that explore the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with the fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice understand and mitigate biases in word embeddings. 
    more » « less
  4. Word vector embeddings have been shown to contain and amplify biases in the data they are extracted from. Consequently, many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid this, we present the Visualization of Embedding Representations for deBiasing (“VERB”) system, an open-source web-based visualization tool that helps users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus on their geometric properties. In particular, VERB offers easy-to-follow examples that explore the effects of these debiasing techniques on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working with the fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP novice understand and mitigate biases in word embeddings. 
    more » « less
  5. As we begin to see low-powered computing paradigms (Neuromorphic Computing, Spiking Neural Networks, etc.) becoming more popular, learning binary word embeddings has become increasingly important for supporting NLP applications at the edge. Existing binary word embeddings are mostly derived from pretrained real-valued embeddings through different simple transformations, which often break the semantic consistency and the so-called ``arithmetic'' properties learned by the original, real-valued embeddings. This paper aims to address this limitation by introducing a new approach to learn binary embeddings from scratch, preserving the semantic relationships between words as well as the arithmetic properties of the embeddings themselves. To achieve this, we propose a novel genetic algorithm to learn the relationships between words from existing word analogy data-sets, carefully making sure that the arithmetic properties of the relationships are preserved. Evaluating our generated 16, 32, and 64-bit binary word embeddings on Mikolov's word analogy task shows that more than 95% of the time, the best fit for the analogy is ranked in the top 5 most similar words in terms of cosine similarity." 
    more » « less