skip to main content

Title: Electronic profiling of membrane antigen expression via immunomagnetic cell manipulation
Membrane antigens control cell function by regulating biochemical interactions and hence are routinely used as diagnostic and prognostic targets in biomedicine. Fluorescent labeling and subsequent optical interrogation of cell membrane antigens, while highly effective, limit expression profiling to centralized facilities that can afford and operate complex instrumentation. Here, we introduce a cytometry technique that computes surface expression of immunomagnetically labeled cells by electrically tracking their trajectory under a magnetic field gradient on a microfluidic chip with a throughput of >500 cells per min. In addition to enabling the creation of a frugal cytometry platform, this immunomagnetic cell manipulation-based measurement approach allows direct expression profiling of target subpopulations from non-purified samples. We applied our technology to measure epithelial cell adhesion molecule expression on human breast cancer cells. Once calibrated, surface expression and size measurements match remarkably well with fluorescence-based measurements from a commercial flow cytometer. Quantitative measurements of biochemical and biophysical cell characteristics with a disposable cytometer have the potential to impact point of care testing of clinical samples particularly in resource limited settings.
Authors:
; ; ; ; ;
Award ID(s):
1752170
Publication Date:
NSF-PAR ID:
10098507
Journal Name:
Lab on a Chip
ISSN:
1473-0197
Sponsoring Org:
National Science Foundation
More Like this
  1. Exosomes have been considered as high-quality biomarkers for disease diagnosis, as they are secreted by cells into extracellular environments as nanovesicles with rich and unique molecular information, and can be isolated and enriched from clinical samples. However, most existing exosome assays, to date, require time-consuming isolation and purification procedures; the detection specificity and sensitivity are also in need of improvement for the realization of exosome-based disease diagnostics. This paper reports a unique exosome assay technology that enables completing both magnetic nanoparticle (MNP)-based exosome extraction and high-sensitivity photonic crystal (PC)-based label-free exosome detection in a single miniature vessel within one hour,more »while providing an improved sensitivity and selectivity. High specificity of the assay to membrane antigens is realized by functionalizing both the MNPs and the PC with specific antibodies. A low limit of detection on the order of 10 7 exosome particles per milliliter (volume) is achieved because the conjugated MNP–exosome nanocomplexes offer a larger index change on the PC surface, compared to the exosomes alone without using MNPs. Briefly, the single-step exosome assay involves (i) forming specific MNP–exosome nanocomplexes to enrich exosomes from complex samples directly on the PC surface at the bottom of the vessel, with a >500 enrichment factor, and (ii) subsequently, performing in situ quantification of the nanocomplexes using the PC biosensor. The present exosome assay method is validated in analyzing multiple membrane proteins of exosomes derived from murine macrophage cells with high selectivity and sensitivity, while requiring only about one hour. This assay technology will provide great potential for exosome-based disease diagnostics.« less
  2. Central nervous system atypical teratoid/rhabdoid tumors (ATRTs) are rare and aggressive tumors with a very poor prognosis. Current treatments for ATRT include resection of the tumor, followed by systemic chemotherapy and radiation therapy, which have toxic side effects for young children. Gene expression analyses of human ATRTs and normal brain samples indicate that ATRTs have aberrant expression of epigenetic markers including class I histone deacetylases (HDAC’s) and lysine demethylase (LSD1). Here, we investigate the effect of a small molecule epigenetic modulator known as Domatinostat (4SC-202), which inhibits both class I HDAC’s and Lysine Demethylase (LSD1), on ATRT cell survival andmore »single cell heterogeneity. Our findings suggest that 4SC-202 is both cytotoxic and cytostatic to ATRT in 2D and 3D scaffold cell culture models and may target cancer stem cells. Single-cell RNA sequencing data from ATRT-06 spheroids treated with 4SC-202 have a reduced population of cells overexpressing stem cell-related genes, including SOX2. Flow cytometry and immunofluorescence on 3D ATRT-06 scaffold models support these results suggesting that 4SC-202 reduces expression of cancer stem cell markers SOX2, CD133, and FOXM1. Drug-induced changes to the systems biology landscape are also explored by multi-omics enrichment analyses. In summary, our data indicate that 4SC-202 has both cytotoxic and cytostatic effects on ATRT, targets specific cell sub-populations, including those with cancer stem-like features, and is an important potential cancer therapeutic to be investigated in vivo.« less
  3. Blood is an attractive carrier for plasmid and RNA based medicine in cell therapy. Electroporation serves as its favorable delivery tool for simple operation, quick internalization, minimum cell culture involvement, and low contamination risk. However, the delivery outcomes of electroporation heavily depend on the treated cells such as their type, size, and orientation to the electric field, not ideal for highly heterogeneous blood samples. Herein a new electroporation system was developed towards effective transfection to cells in blood regardless their large diversity. By coupling replica molding and infiltration coating processes, we successfully configured a three-dimensional electrode comprised of a polymermore »micropillar array on which carbon nanotubes (CNTs) are partially embedded. During electroporation, cells sag between micropillars and deform to form conformal contact with their top and side surface. The implanted CNTs not only provide a robust conductive coating for the polymer micropattern, but also have their protruded ends face the cell membrane vertically everywhere with maximum transmembrane potential. Regardless their largely varied sizes and random dispersion, both individual blood cell type and whole blood samples were effectively transfected with plasmid DNA (85% after 24 hrs and 95% after 72 hrs, or 2.5-3.0 folds enhancement). High-dose RNA probes were also introduced which regulate better the expression levels of exogenous and endogenous genes in blood cells. Besides its promising performance on non-viral delivery route to cell-related studies and therapy, the invovled new fabrication method also provides a convenient and effective way to construct flexible electronics with stable micro/nanofeatures on the surface.« less
  4. Abstract

    Recent genome-wide studies have begun to identify gene variants, expression profiles, and regulators associated with neuroticism, anxiety disorders, and depression. We conducted a set of experimental cell culture studies of gene regulation by micro RNAs (miRNAs), based on genome-wide transcriptome, proteome, and miRNA expression data from twentypostmortemsamples of lateral amygdala from donors with known neuroticism scores. Using Ingenuity Pathway Analysis and TargetScan, we identified a list of mRNA–protein–miRNA sets whose expression patterns were consistent with miRNA-based translational repression, as a function of trait anxiety. Here, we focused on one gene from that list, which is of particular translational significancemore »in Psychiatry: synaptic vesicle glycoprotein 2A (SV2A) is the binding site of the anticonvulsant drug levetiracetam ((S)-α-Ethyl-2-oxo-1-pyrrolidineacetamide), which has shown promise in anxiety disorder treatments. We confirmed thatSV2Ais associated with neuroticism or anxiety using an original GWAS of a community cohort (N = 1,706), and cross-referencing a published GWAS of multiple cohorts (Ns ranging from 340,569 to 390,278).Postmortemamygdala expression profiling implicated three putative regulatory miRNAs to targetSV2A: miR-133a, miR-138, and miR-218. Moving from association to experimental causal testing in cell culture, we used a luciferase assay to demonstrate that miR-133a and miR-218, but not miR-138, significantly decreased relative luciferase activity from theSV2Adual-luciferase construct. In human neuroblastoma cells, transfection with miR-133a and miR-218 reduced both endogenousSV2AmRNA and protein levels, confirming miRNA targeting of theSV2Agene. This study illustrates the utility of combiningpostmortemgene expression data with GWAS to guide experimental cell culture assays examining gene regulatory mechanisms that may contribute to complex human traits. Identifying specific molecular mechanisms of gene regulation may be useful for future clinical applications in anxiety disorders or other forms of psychopathology.

    « less
  5. Abstract

    Minimizing variability in collection and processing of human blood samples for research remains a challenge. Delaying plasma or serum isolation after phlebotomy (processing delay) can cause perturbations of numerous analytes. Thus, a comprehensive understanding of how processing delay affects major endpoints used in human immunology research is necessary. Therefore, we studied how processing delay affects commonly measured cytokines and immune cell populations. We hypothesized that short-term time delays inherent to human research in serum and plasma processing impact commonly studied immunological analytes. Blood from healthy donors was subjected to processing delays commonly encountered in sample collection, and then assayedmore »by 62-plex Luminex panel, 40-parameter mass cytometry panel, and 540,000 transcript expression microarray. Variance for immunological analytes was estimated using each individual’s baseline as a control. In general, short-term processing delay led to small changes in plasma and serum cytokines (range − 10.8 to 43.5%), markers and frequencies of peripheral blood mononuclear cell phenotypes (range 0.19 to 3.54 fold), and whole blood gene expression (stable for > 20 K genes)—with several exceptions described herein. Importantly, we built an open-access web application allowing investigators to estimate the degree of variance expected from processing delay for measurements of interest based on the data reported here.

    « less