skip to main content


Title: A portable impedance microflow cytometer for measuring cellular response to hypoxia
Abstract

This article presents the development and testing of a low‐cost (<$60), portable, electrical impedance‐based microflow cytometer for single‐cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single‐cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from −23% to seven times as compared with −17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low‐cost screening technique for sickle cell disease and other diseases in the field and low‐resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.

 
more » « less
Award ID(s):
2032730
NSF-PAR ID:
10449472
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
118
Issue:
10
ISSN:
0006-3592
Page Range / eLocation ID:
p. 4041-4051
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hypoxia‐induced polymerization of sickle hemoglobin and the related ion diffusion across cell membrane can lead to changes in cell dielectric properties, which can potentially serve as label‐free, diagnostic biomarkers for sickle cell disease. This article presents a microfluidic‐based approach with on‐chip gas control for the impedance spectroscopy of suspended cells within the frequency range of 40 Hz to 110 MHz. A comprehensive bioimpedance of sickle cells under both normoxia and hypoxia is achieved rapidly (within ∼7 min) and is appropriated by small sample volumes (∼2.5 μL). Analysis of the sensing modeling is performed to obtain optimum conditions for dielectric spectroscopy of sickle cell suspensions and for extraction of single cell properties from the measured impedance spectra. The results of sickle cells show that upon hypoxia treatment, cell interior permittivity and conductivity increase, while cell membrane capacitance decreases. Moreover, the relative changes in cell dielectric parameters are found to be dependent on the sickle and fetal hemoglobin levels. In contrast, the changes in normal red blood cells between the hypoxia and normoxia states are unnoticeable. The results of sickle cells may serve as a reference to design dielectrophoresis‐based cell sorting and electrodeformation testing devices that require cell dielectric characteristics as input parameters. The demonstrated method for dielectric characterization of single cells from the impedance spectroscopy of cell suspensions can be potentially applied to other cell types and under varied gas conditions.

     
    more » « less
  2. null (Ed.)
    Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that alone can weaken cell mechanical deformability. The effects of cyclic hypoxia on cellular biomechanics have yet to be fully investigated. As the oxygen affinity of hemoglobin plays a key role in the biological function and mechanical performance of RBCs, the repeated transitions of hemoglobin between its R (high oxygen tension) and T (low oxygen tension) states may impact their mechanical behavior. The present study focuses on developing a novel microfluidics-based assay for characterization of the effect of cyclic hypoxia on cell biomechanics. The capability of this assay is demonstrated by a longitudinal study of individual RBCs in health and sickle cell disease subjected to cyclic hypoxia conditions of various durations and levels of low oxygen tension. Viscoelastic properties of cell membranes are extracted from tensile stretching and relaxation processes of RBCs induced by the electrodeformation technique. Results demonstrate that cyclic hypoxia alone can significantly reduce cell deformability, similar to the fatigue damage accumulated through cyclic mechanical loading. RBCs affected by sickle cell disease are less deformable (significantly higher membrane shear modulus and viscosity) than normal RBCs. The fatigue resistance of sickle RBCs to the cyclic hypoxia challenge is significantly inferior to normal RBCs, and this trend is more significant in mature erythrocytes of sickle cells. When oxygen affinity of sickle hemoglobin is enhanced by anti-sickling drug treatment of 5-hydroxymethyl-2-furfural (5-HMF), sickle RBCs show ameliorated resistance to fatigue damage induced by cyclic hypoxia. These results illustrate that an important biophysical mechanism underlying RBC senescence in which cyclic hypoxia challenge alone can lead to mechanical degradation of the RBC membrane. We envision the application of this assay can be further extended to RBCs in other blood diseases and other types of cells. 
    more » « less
  3. Abstract

    We overview a previously reported low-cost, compact, and 3D-printed shearing interferometer system for automated diagnosis of sickle cell disease based on red blood cell (RBC) bio-physical parameters and membrane fluctuations measured via digital holographic microscopy. The portable quantitative phase microscope is used to distinguish between healthy RBCs and those affected by sickle cell disease. Video holograms of RBCs are recorded, then each video hologram frame is computationally reconstructed to retrieve the time-varying phase profile of the cell distribution under study. The dynamic behavior of the cells is captured by creating a spatio-temporal data cube from which features regarding membrane fluctuations are extracted. Furthermore, the Optical Flow algorithm was used to capture lateral motility information of the cells. The motility-based features are combined with physical, morphology-based cell features and inputted into a random forest classifier which outputs the health state of the cell. Classification is performed with high accuracy at both the cell level and patient level.

     
    more » « less
  4. Mammalian cells are soft, and correct functioning requires that cells undergo dynamic shape changes in vivo. Although a range of diseases are associated with stiffening of red blood cells (RBCs; e.g., sickle cell anemia or malaria), the mechanical properties and thus shape responses of cells to complex viscoelastic environments are poorly understood. We use vapor pressure measurements to identify aqueous liquid crystals (LCs) that are in osmotic equilibrium with RBCs and explore mechanical coupling between RBCs and LCs. When transferred from an isotropic aqueous phase into a LC, RBCs exhibit complex yet reversible shape transformations, from initially biconcave disks to elongated and folded geometries with noncircular cross-sections. Importantly, whereas the shapes of RBCs are similar in isotropic fluids, when strained by LC, a large variance in shape response is measured, thus unmasking cell-to-cell variation in mechanical properties. Numerical modeling of LC and cell mechanics reveals that RBC shape responses occur at constant cell membrane area but with membrane shear moduli that vary between cells from 2 to 16 × 10−6N/m. Temperature-dependent LC elasticity permits continuous tuning of RBC strains, and chemical cross-linking of RBCs, a model for diseased cells, leads to striking changes in shape responses of the RBCs. Overall, these results provide insight into the coupling of strain between soft mammalian cells and synthetic LCs, and hint at new methods for rapidly characterizing mechanical properties of single mammalian cells in a population and thus cell-to-cell variance.

     
    more » « less
  5. Summary

    Individuals with sickle cell disease (SCD) have persistently elevated thrombin generation that results in a state of systemic hypercoagulability. Antithrombin‐III (ATIII), an endogenous serine protease inhibitor, inhibits several enzymes in the coagulation cascade, including thrombin. Here, we utilize a biomimetic microfluidic device to model the morphology and adhesive properties of endothelial cells (ECs) activated by thrombin and examine the efficacy of ATIII in mitigating the adhesion of SCD patient‐derived red blood cells (RBCs) and EC retraction. Microfluidic devices were fabricated, seeded with ECs, and incubated under physiological shear stress. Cells were then activated with thrombin with or without an ATIII pretreatment. Blood samples from subjects with normal haemoglobin (HbAA) and subjects with homozygous SCD (HbSS) were used to examine RBC adhesion to ECs. Endothelial cell surface adhesion molecule expression and confluency in response to thrombin and ATIII treatments were also evaluated. We found that ATIII pretreatment of ECs reduced HbSS RBC adhesion to thrombin‐activated endothelium. Furthermore, ATIII mitigated cellular contraction and reduced surface expression of von Willebrand factor and vascular cell adhesion molecule‐1 (VCAM‐1) mediated by thrombin. Our findings suggest that, by attenuating thrombin‐mediated EC damage and RBC adhesion to endothelium, ATIII may alleviate the thromboinflammatory manifestations of SCD.

     
    more » « less