skip to main content


Title: Particle acceleration in the Herbig–Haro objects HH 80 and HH 81
Award ID(s):
1814011
NSF-PAR ID:
10098689
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
482
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4687 to 4696
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate maximal tori in the Hochschild cohomology Lie algebra ${\operatorname {HH}}^1(A)$ of a finite dimensional algebra $A$, and their connection with the fundamental groups associated to presentations of $A$. We prove that every maximal torus in ${\operatorname {HH}}^1(A)$ arises as the dual of some fundamental group of $A$, extending the work by Farkas, Green, and Marcos; de la Peña and Saorín; and Le Meur. Combining this with known invariance results for Hochschild cohomology, we deduce that (in rough terms) the largest rank of a fundamental group of $A$ is a derived invariant quantity, and among self-injective algebras, an invariant under stable equivalences of Morita type. Using this we prove that there are only finitely many monomial algebras in any derived equivalence class of finite dimensional algebras; hitherto this was known only for very restricted classes of monomial algebras. 
    more » « less
  2. null (Ed.)
    ABSTRACT (Sub)millimetre dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in discs around young stellar objects. We propose a method to constrain the opacity κν in edge-on discs from a characteristic optical depth τ0,ν, the density ρ0, and radius R0 at the disc outer edge through κν = τ0,ν/(ρ0R0), where τ0,ν is inferred from the shape of the observed flux along the major axis, ρ0 from gravitational stability considerations, and R0 from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disc, which has high-resolution data in Atacama Large Millimetre/submillimetre Array (ALMA) bands 9, 7, 6, and 3 and Very Large Array Ka band (λ = 0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modelling is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of κν ≈ 1.9 × 10−2, 1.3 × 10−2, and 4.9 × 10−3 cm2 g−1 of gas and dust for ALMA bands 7, 6, and 3, respectively, with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription κλ = 2.3 × 10−2(1.3mm/λ) cm2 g−1 . We inferred a temperature of ∼45 K at the disc outer edge that increases radially inwards. It is well above the sublimation temperatures of ices such as CO and N2, which supports the notion that the disc chemistry cannot be completely inherited from the protostellar envelope. 
    more » « less
  3. Raible, David (Ed.)