skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controls on deep critical zone architecture: a historical review and four testable hypotheses: Four Testable Hypotheses about the Deep Critical Zone
Award ID(s):
1331726 1331940
PAR ID:
10098729
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
42
Issue:
1
ISSN:
0197-9337
Page Range / eLocation ID:
128 to 156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The presence of well-documented sites in the Americas predating and south of the opening of an ice-free corridor in the North American ice sheets lends credence to a Pacific coastal migration theory (CMT) explaining the route for the initial peopling of the Americas. This theory has been informally discussed for more than 50 years, but until recently, has been largely ignored and never properly defined as a result. We provide a formal definition of the CMT which, briefly stated, is that Upper Paleolithic populations moved from Asia to coastal regions along the northwestern Pacific Rim between ~45-30 ka. By ~30 ka these coastal populations developed a mixed maritime, nearshore, and terrestrial adaptation involving the use of boats, shell fishhooks for deep-water fishing, and a stemmed point and macroblade core technology. About 25-24 ka a subset of these coastal populations became isolated somewhere in the vicinity of the Japan/Paleo-Hokkaido, Sahkalin, Kuril (PSHK) region, developing genetically into the ancient Native American (ANA) populations that eventually settled the Americas. Between ~22-16 ka these ANA people began migrating by foot and boat along the southern Beringian coast and down the Alaskan and Canadian coastline into the Americas south of the continental ice sheets before eventually expanding inland. We develop a series of testable hypotheses through which the CMT can be examined. 
    more » « less
  2. null (Ed.)
    Niche construction theory (NCT) has emerged as a promising theoretical tool for interpreting zooarchaeological material. However, its juxtaposition against more established frameworks like optimal foraging theory (OFT) has raised important criticism around the testability of NCT for interpreting hominin foraging behavior. Here, we present an optimization foraging model with NCT features designed to consider the destructive realities of the archaeological record after providing a brief review of OFT and NCT. Our model was designed to consider a foragers decision to exploit an environment given predation risk, mortality, and payoff ratios between different ecologies, like more-open or more-forested environments. We then discuss how the model can be used with zooarchaeological data for inferring environmental exploitation by a primitive hominin, Homo floresiensis, from the island of Flores in Southeast Asia. Our example demonstrates that NCT can be used in combination with OFT principles to generate testable foraging hypotheses suitable for zooarchaeological research 
    more » « less
  3. Beavers (Castor canadensis) have not been adequately included in critical zone research, yet they can affect multiple critical zone processes across the terrestrial-aquatic interface of river corridors. River corridors (RC) provide a disproportionate amount of ecosystem services. Over time, beaver activity, including submersion of woody vegetation, burrowing, dam building, and abandonment, can impact critical zone processes in the river corridor by influencing landscape evolution, biodiversity, geomorphology, hydrology, primary productivity, and biogeochemical cycling. In particular, they can effectively restore degraded riparian areas and improve water quality and quantity, causing implications for many important ecosystem services. Beaver-mediated river corridor processes in the context of a changing climate require investigation to determine how both river corridor function and critical zone processes will shift in the future. Recent calls to advance river corridor research by leveraging a critical zone perspective can be strengthened through the explicit incorporation of animals, such as beavers, into research projects over space and time. This article illustrates how beavers modify the critical zone across different spatiotemporal scales, presents research opportunities to elucidate the role of beavers in influencing Western U.S. ecosystems, and, more broadly, demonstrates the importance of integrating animals into critical zone science. 
    more » « less