skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photon entanglement entropy as a probe of many-body correlations and fluctuations
Recent theories and experiments have explored the use of entangled photons as a spectroscopic probe of physical systems. We describe here a theoretical description for entropy production in the scattering of an entangled biphoton Fock state within an optical cavity. We develop this using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-photon interaction via a complex coupling constant, ξ. We show that the von Neumann entropy provides a concise measure of this interaction. We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes, whereas in the limit of slow fluctuations, the entanglement entropy depends on the magnitude of the fluctuations and reaches a maximum. Our result suggests that experiments measuring biphoton entanglement give microscopic information pertaining to exciton-exciton correlations.  more » « less
Award ID(s):
1836075
PAR ID:
10098764
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of chemical physics
Volume:
150
Issue:
18
ISSN:
0021-9606
Page Range / eLocation ID:
184106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent theories and experiments have explored the use of entangled photons as a spectroscopic probe of physical systems. We describe here a theoretical description for entropy production in the scattering of an entangled biphoton Fock state within an optical cavity. We develop this using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-photon interaction via a complex coupling constant, ξ. We show that the von Neumann entropy provides a concise measure of this interaction. We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes, whereas in the limit of slow fluctuations, the entanglement entropy depends on the magnitude of the fluctuations and reaches a maximum. Our result suggests that experiments measuring biphoton entanglement give microscopic information pertaining to exciton-exciton correlations. 
    more » « less
  2. Recent theories and experiments have explored the use of entangled photons as a spectroscopic probe of physical systems. We describe here a theoretical description for entropy production in the scattering of an entangled biphoton Fock state within an optical cavity. We develop this using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-photon interaction via a complex coupling constant, . We show that the von Neumann entropy provides a concise measure of this interaction. We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes, whereas in the limit of slow fluctuations, the entanglement entropy depends on the magnitude of the fluctuations and reaches a maximum. Our result suggests that experiments measuring biphoton entanglement give microscopic information pertaining to exciton-exciton correlations. 
    more » « less
  3. We develop a microscopic diagrammatic theory for cavity-mediated photon scattering in a topological one-dimensional insulator described by the Su–Schrieffer–Heeger model. Within the velocity-gauge formulation, we derive the photon self-energy and vertex corrections arising from virtual electron–hole excitations coupled to a quantized cavity mode, and we evaluate the resulting polariton dispersion and two-photon correlation spectra. Our analysis shows that vacuum fluctuations of the cavity field induce a momentum-resolved self-energy that mixes conduction and valence bands through virtual photon exchange, producing interband hybridization and avoided crossings in the electronic dispersion. This “cavity dressing” is symmetry-dependent, vanishing at the Brillouin-zone edge where the dipole matrix element is zero, and its strength is controlled by the spatial coherence range ζ≈(lc/a)2 of virtual excitations. We further examine how the cavity modifies nonlinear optical observables, including the Kerr nonlinearity and biphoton spectral entanglement, and identify the regimes where these effects become sensitive to the underlying topological phase. The theoretical framework established here provides a unified description of light–matter coupling in topological and polaritonic systems, bridging solid-state cavity QED with the emerging field of cavity-modified quantum materials. Our results suggest that engineered photonic environments can coherently reshape the electronic landscape of topological insulators, offering new routes to control collective electronic and optical phenomena through vacuum-field fluctuations. 
    more » « less
  4. Abstract Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit. 
    more » « less
  5. We present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system. 
    more » « less