Quantum entanglement plays a prominent role in both foundational physics and emerging quantum technologies. Light is especially promising as a platform for experimental realizations of high-dimensional entanglement, for which the time-frequency degree of freedom provides a natural encoding. Here, we propose and demonstrate a technique to determine the full quantum state of a pair of photons entangled in the time-frequency domain. Our approach, based on spectral shearing interferometry, is entirely self-referenced. To test our system, we measure a photon-pair source with nonlocal spectral phase that results in entanglement between the photons, in which the time when either photon is detected is correlated with the frequency of the other photon. The results demonstrate an effective new tool for exploring the temporal and spectral characteristics of multipartite quantum systems exhibiting high-dimensional entanglement.
Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.
more » « less- Award ID(s):
- 2013771
- NSF-PAR ID:
- 10373325
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Light: Science & Applications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2047-7538
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.
-
Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light–based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes.more » « less
-
Motivated by recent advances in the development of single photon emitters for quantum information sciences, here we design and formulate a quantum cascade model that describes cascade emission by a quantum dot (QD) in a cavity structure while preserving entanglement that stores information needed for single photon emission. The theoretical approach is based on a photonic structure that consists of two orthogonal cavities in which resonance with either the first or second of the two emitted photons is possible, leading to amplification and rerouting of the entangled light. The cavity–QD scheme uses a four-level cascade emitter that involves three levels for each polarization, leading to two spatially entangled photons for each polarization. By solving the Schrodinger equation, we identify the characteristic properties of the system, which can be used in conjunction with optimization techniques to achieve the “best” design relative to a set of prioritized criteria or constraints in our optical system. The theoretical investigations include an analysis of emission spectra in addition to the joint spectral density profile, and the results demonstrate the ability of the cavities to act as frequency filters for the photons that make up the entanglements and to modify entanglement properties. The results provide new opportunities for the experimental design and engineering of on-demand single photon sources.
-
Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for numerous applications in quantum information science. In this work, we report an all-optical time lens for quantum signals based on Bragg-scattering four-wave mixing with picosecond resolution. Our system achieves a temporal magnification factor of 158 with single-photon level inputs, which is sufficient to overcome the intrinsic timing jitter of superconducting nanowire single-photon detectors. We demonstrate discrimination of two terahertz-bandwidth, single-photon-level pulses with 2.1 ps resolution (electronic jitter corrected resolution of 1.25 ps). We draw on elegant tools from Fourier optics to further show that the time-lens framework can be extended to perform complex unitary spectro-temporal transformations by imparting optimized temporal and spectral phase profiles to the input waveforms. Using numerical optimization techniques, we show that a four-stage transformation can realize an efficient temporal mode sorter that demultiplexes 10 Hermite–Gaussian (HG) modes. Our time-lens-based framework represents a new toolkit for arbitrary spectro-temporal processing of single photons, with applications in temporal mode quantum processing, high-dimensional quantum key distribution, temporal mode matching for quantum networks, and quantum-enhanced sensing with time-frequency entangled states.