skip to main content


Title: A Decentralized Approach For Real Time Anomaly Detection In Transportation Networks
Internet of Things (IoT), edge/fog computing, and the cloud are fueling rapid development in smart connected cities. Given the increasing rate of urbanization, the advancement of these technologies is a critical component of mitigating demand on already constrained transportation resources. Smart transportation systems are most effectively implemented as a decentralized network, in which traffic sensors send data to small low-powered devices called Roadside Units (RSUs). These RSUs host various computation and networking services. Data driven applications such as optimal routing require precise real-time data, however, data-driven approaches are susceptible to data integrity attacks. Therefore we propose a multi-tiered anomaly detection framework which utilizes spare processing capabilities of the distributed RSU network in combination with the cloud for fast, real-time detection. In this paper we present a novel real time anomaly detection framework. Additionally, we focus on implementation of our framework in smart-city transportation systems by providing a constrained clustering algorithm for RSU placement throughout the network. Extensive experimental validation using traffic data from Nashville, TN demonstrates that the proposed methods significantly reduce computation requirements while maintaining similar performance to current state of the art anomaly detection methods.  more » « less
Award ID(s):
1818901 1647015 1818942
NSF-PAR ID:
10098812
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Smart Computing (SMARTCOMP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern smart cities are focusing on smart transportation solutions to detect and mitigate the effects of various traffic incidents in the city. To materialize this, roadside units and ambient trans-portation sensors are being deployed to collect vehicular data that provides real-time traffic monitoring. In this paper, we first propose a real-time data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. We perform extensive experimental validation using mobility data collected from the City of Nashville, Tennessee, and prove that the method can detect incidents within each cluster in real-time. 
    more » « less
  2. Modern smart cities need smart transportation solutions to quickly detect various traffic emergencies and incidents in the city to avoid cascading traffic disruptions. To materialize this, roadside units and ambient transportation sensors are being deployed to collect speed data that enables the monitoring of traffic conditions on each road segment. In this paper, we first propose a scalable data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. Second, using cluster-level detection, we propose a folded Gaussian classifier to pinpoint the particular segment in a cluster where the incident happened in an automated manner. We perform extensive experimental validation using mobility data collected from four cities in Tennessee, compare with the state-of-the-art ML methods, to prove that our method can detect incidents within each cluster in real-time and outperforms known ML methods. 
    more » « less
  3. Edge and Fog computing paradigms are used to process big data generated by the increasing number of IoT devices. These paradigms have enabled cities to become smarter in various aspects via real-time data-driven applications. While these have addressed some flaws of cloud computing some challenges remain particularly in terms of privacy and security. We create a testbed based on a distributed processing platform called the Information flow of Things (IFoT) middleware. We briefly describe a decentralized traffic speed query and routing service implemented on this framework testbed. We configure the testbed to test counter measure systems that aim to address the security challenges faced by prior paradigms. Using this testbed, we investigate a novel decentralized anomaly detection approach for time-sensitive distributed smart transportation systems 
    more » « less
  4. Residents in cities typically use third-party platforms such as Google Maps for route planning services. While providing near real-time processing, these state of the art centralized deployments are limited to multiprocessing environments in data centers. This raises privacy concerns, increases risk for critical data and causes vulnerability to network failure. In this paper, we propose to use decentralized road side units (RSU) (owned by the city) to perform route planning. We divide the city road network into grids, each assigned an RSU where traffic data is kept locally, increasing security and resiliency such that the system can perform even if some RSUs fail. Route generation is done in two steps. First, an optimal grid sequence is generated, prioritizing shortest path calculation accuracy but not RSU load. Second, we assign route planning tasks to the grids in the sequence. Keeping in mind RSU load and constraints, tasks can be allocated and executed in any non-optimal grid but with lower accuracy. We evaluate this system using Metropolitan Nashville road traffic data. We divided the area into 613 grids, configuring load and neighborhood sizes to meet delay constraints while maximizing model accuracy. The results show that there is a 30% decrease in processing time with a decrease in model accuracy of 99% to 92.3%, by simply increasing the search area to the optimal grid's immediate neighborhood. 
    more » « less
  5. Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability. 
    more » « less