Internet of Things and data sciences are fueling the development of innovative solutions for various applications in Smart and Connected Communities (SCC). These applications provide participants with the capability to exchange not only data but also resources, which raises the concerns of integrity, trust, and above all the need for fair and optimal solutions to the problem of resource allocation. This exchange of information and resources leads to a problem where the stakeholders of the system may have limited trust in each other. Thus, collaboratively reaching consensus on when, how, and who should access certain resources becomes problematic. This paper presents SolidWorx, a blockchain-based platform that provides key mechanisms required for arbitrating resource consumption across different SCC applications in a domain-agnostic manner. For example, it introduces and implements a hybrid-solver pattern, where complex optimization computation is handled off-blockchain while solution validation is performed by a smart contract. To ensure correctness, the smart contract of SolidWorx is generated and verified.
more »
« less
SolidWorx: A Resilient and Trustworthy Transactive Platform for Smart and Connected Communities
Internet of Things and data sciences are fueling the development of innovative solutions for various applications in Smart and Connected Communities (SCC). These applications provide participants with the capability to exchange not only data but also resources, which raises the concerns of integrity, trust, and above all the need for fair and optimal solutions to the problem of resource allocation. This exchange of information and resources leads to a problem where the stakeholders of the system may have limited trust in each other. Thus, collaboratively reaching consensus on when, how, and who should access certain resources becomes problematic. This paper presents SolidWorx, a blockchain-based platform that provides key mechanisms required for arbitrating resource consumption across different SCC applications in a domain-agnostic manner. For example, it introduces and implements a hybrid-solver pattern, where complex optimization computation is handled off-blockchain while solution validation is performed by a smart contract. To ensure correctness, the smart contract of SolidWorx is generated and verified using a model-based approach.
more »
« less
- PAR ID:
- 10098815
- Date Published:
- Journal Name:
- 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)
- Page Range / eLocation ID:
- 1263 to 1272
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Double auction mechanisms have been designed to trade a variety of divisible resources (e.g., electricity, mobile data, and cloud resources) among distributed agents. In such divisible double auction, all the agents (both buyers and sellers) are expected to submit their bid profiles, and dynamically achieve the best responses. In practice, these agents may not trust each other without a market mediator. Fortunately, smart contract is extensively used to ensure digital agreement among mutually distrustful agents. The consensus protocol helps the smart contract execution on the blockchain to ensure strong integrity and availability. However, severe privacy risks would emerge in the divisible double auction since all the agents should disclose their sensitive data such as the bid profiles (i.e., bid amount and prices in different iterations) to other agents for resource allocation and such data are replicated on all the nodes in the network. Furthermore, the consensus requirements will bring a huge burden for the blockchain, which impacts the overall performance. To address these concerns, we propose a hybridized TEE-Blockchain system (system and auction mechanism co-design) to privately execute the divisible double auction. The designed hybridized system ensures privacy, honesty and high efficiency among distributed agents. The bid profiles are sealed for optimally allocating divisible resources while ensuring truthfulness with a Nash Equilibrium. Finally, we conduct experiments and empirical studies to validate the system and auction performance using two real-world applications.more » « less
-
Opening up data produced by the Internet of Things (IoT) and mobile devices for public utilization can maximize their economic value. Challenges remain in the trustworthiness of the data sources and the security of the trading process, particularly when there is no trust between the data providers and consumers. In this paper, we propose DEXO, a decentralized data exchange mechanism that facilitates secure and fair data exchange between data consumers and distributed IoT/mobile data providers at scale, allowing the consumer to verify the data generation process and the providers to be compensated for providing authentic data, with correctness guarantees from the exchange platform. To realize this, DEXO extends the decentralized oracle network model that has been successful in the blockchain applications domain to incorporate novel hardware-cryptographic co-design that harmonizes trusted execution environment, secret sharing, and smart contract-assisted fair exchange. For the first time, DEXO ensures end-to-end data confidentiality, source verifiability, and fairness of the exchange process with strong resilience against participant collusion. We implemented a prototype of the DEXO system to demonstrate feasibility. The evaluation shows a moderate deployment cost and significantly improved blockchain operation efficiency compared to a popular data exchange mechanism.more » « less
-
In the Internet of Things (loT) era, edge computing is a promising paradigm to improve the quality of service for latency sensitive applications by filling gaps between the loT devices and the cloud infrastructure. Highly geo-distributed edge computing resources that are managed by independent and competing service providers pose new challenges in terms of resource allocation and effective resource sharing to achieve a globally efficient resource allocation. In this paper, we propose a novel blockchain-based model for allocating computing resources in an edge computing platform that allows service providers to establish resource sharing contracts with edge infrastructure providers apriori using smart contracts in Ethereum. The smart contract in the proposed model acts as the auctioneer and replaces the trusted third-party to handle the auction. The blockchain-based auctioning protocol increases the transparency of the auction-based resource allocation for the participating edge service and infrastructure providers. The design of sealed bids and bid revealing methods in the proposed protocol make it possible for the participating bidders to place their bids without revealing their true valuation of the goods. The truthful auction design and the utility-aware bidding strategies incorporated in the proposed model enables the edge service providers and edge infrastructure providers to maximize their utilities. We implement a prototype of the model on a real blockchain test bed and our extensive experiments demonstrate the effectiveness, scalability and performance efficiency of the proposed approach.more » « less
-
Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensive, making it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. In this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance.more » « less