skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: A Resource-Efficient Smart Contract for Privacy Preserving Smart Home Systems
Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensive, making it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. In this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance.  more » « less
Award ID(s):
2107101 2027977 1703560
PAR ID:
10334313
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE SmartWorld
Page Range / eLocation ID:
532 to 539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Blockchain is a developing technology that can be utilized for secure data storage and sharing. In this work, we examine the cost of Blockchain-based data storage for constrained Internet of Things (IoT) devices. We had two phases in the study. In the first phase, we stored data retrieved from a temperature/humidity sensor connected to an Ethereum testnet blockchain using smart contracts in two different ways: first, appending the new data to the existing data, storing all sensor data; and second, overwriting the new data onto the existing data, storing only a recent portion of the data. In the second phase, we stored simulated data from several sensors on the blockchain assuming sensor data is numeric. We proposed a method for encoding the data from the sensors in one variable and compared the costs of storing the data in an array versus storing the encoded data from all sensors in one variable. We also compared the costs of carrying out the encoding within the smart contract versus outside the smart contract. In the first phase, our results indicate that overwriting data points is more cost-efficient than appending them. In the second phase, using the proposed encoding method to store the data from several sensors costs significantly less than storing the data in an array, if the encoding is done outside the smart contract. If the encoding is carried out in the smart contract, the cost is still less than storing the data in an array, however, the difference is not significant. The study shows that even though expensive, for applications where the integrity and transparency of data are crucial, storing IoT sensor data on Ethereum could be a reliable solution. 
    more » « less
  2. In the Internet of Things (loT) era, edge computing is a promising paradigm to improve the quality of service for latency sensitive applications by filling gaps between the loT devices and the cloud infrastructure. Highly geo-distributed edge computing resources that are managed by independent and competing service providers pose new challenges in terms of resource allocation and effective resource sharing to achieve a globally efficient resource allocation. In this paper, we propose a novel blockchain-based model for allocating computing resources in an edge computing platform that allows service providers to establish resource sharing contracts with edge infrastructure providers apriori using smart contracts in Ethereum. The smart contract in the proposed model acts as the auctioneer and replaces the trusted third-party to handle the auction. The blockchain-based auctioning protocol increases the transparency of the auction-based resource allocation for the participating edge service and infrastructure providers. The design of sealed bids and bid revealing methods in the proposed protocol make it possible for the participating bidders to place their bids without revealing their true valuation of the goods. The truthful auction design and the utility-aware bidding strategies incorporated in the proposed model enables the edge service providers and edge infrastructure providers to maximize their utilities. We implement a prototype of the model on a real blockchain test bed and our extensive experiments demonstrate the effectiveness, scalability and performance efficiency of the proposed approach. 
    more » « less
  3. Smart home IoT devices are becoming increasingly popular. Modern programmable smart home hubs such as SmartThings enable homeowners to manage devices in sophisticated ways to save energy, improve security, and provide conveniences. Unfortunately, many smart home systems contain vulnerabilities, potentially impacting home security and privacy. This paper presents Vigilia, a system that shrinks the attack surface of smart home IoT systems by restricting the network access of devices. As existing smart home systems are closed, we have created an open implementation of a similar programming and configuration model in Vigilia and extended the execution environment to maximally restrict communications by instantiating device-based network permissions. We have implemented and compared Vigilia with forefront IoT-defense systems; our results demonstrate that Vigilia outperforms these systems and incurs negligible overhead. 
    more » « less
  4. The Internet of Medical Things (IoMT) is a network of interconnected medical devices, wearables, and sensors integrated into healthcare systems. It enables real-time data collection and transmission using smart medical devices with trackers and sensors. IoMT offers various benefits to healthcare, including remote patient monitoring, improved precision, and personalized medicine, enhanced healthcare efficiency, cost savings, and advancements in telemedicine. However, with the increasing adoption of IoMT, securing sensitive medical data becomes crucial due to potential risks such as data privacy breaches, compromised health information integrity, and cybersecurity threats to patient information. It is necessary to consider existing security mechanisms and protocols and identify vulnerabilities. The main objectives of this paper aim to identify specific threats, analyze the effectiveness of security measures, and provide a solution to protect sensitive medical data. In this paper, we propose an innovative approach to enhance security management for sensitive medical data using blockchain technology and smart contracts within the IoMT ecosystem. The proposed system aims to provide a decentralized and tamper-resistant plat- form that ensures data integrity, confidentiality, and controlled access. By integrating blockchain into the IoMT infrastructure, healthcare organizations can significantly enhance the security and privacy of sensitive medical data. 
    more » « less
  5. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less