As the real-world applications (image segmentation, speech recognition, machine translation, etc.) are increasingly adopting Deep Neural Networks (DNNs), DNN's vulnerabilities in a malicious environment have become an increasingly important research topic in adversarial machine learning. Adversarial machine learning (AML) focuses on exploring vulnerabilities and defensive techniques for machine learning models. Recent work has shown that most adversarial audio generation methods fail to consider audios' temporal dependency (TD) (i.e., adversarial audios exhibit weaker TD than benign audios). As a result, the adversarial audios are easily detectable by examining their TD. Therefore, one area of interest in the audio AML community is to develop a novel attack that evades a TD-based detection model. In this contribution, we revisit the LSTM model for audio transcription and propose a new audio attack algorithm that evades the TD-based detection by explicitly controlling the TD in generated adversarial audios. The experimental results show that the detectability of our adversarial audio is significantly reduced compared to the state-of-the-art audio attack algorithms. Furthermore, experiments also show that our adversarial audios remain nearly indistinguishable from benign audios with only negligible perturbation magnitude.
more »
« less
Detecting Adversarial Audio via Activation Quantization Error
The robustness and vulnerability of Deep Neural Networks (DNN) are quickly becoming a critical area of interest since these models are in widespread use across real-world applications (i.e., image and audio analysis, recommendation system, natural language analysis, etc.). A DNN's vulnerability is exploited by an adversary to generate data to attack the model; however, the majority of adversarial data generators have focused on image domains with far fewer work on audio domains. More recently, audio analysis models were shown to be vulnerable to adversarial audio examples (e.g., speech command classification, automatic speech recognition, etc.). Thus, one urgent open problem is to detect adversarial audio reliably. In this contribution, we incorporate a separate and yet related DNN technique to detect adversarial audio, namely model quantization. Then we propose an algorithm to detect adversarial audio by using a DNN's quantization error. Specifically, we demonstrate that adversarial audio typically exhibits a larger activation quantization error than benign audio. The quantization error is measured using character error rates. We use the difference in errors to discriminate adversarial audio. Experiments with three the-state-of-the-art audio attack algorithms against the DeepSpeech model show our detection algorithm achieved high accuracy on the Mozilla dataset.
more »
« less
- PAR ID:
- 10312259
- Date Published:
- Journal Name:
- International Joint Conference on Neural Networks (IJCNN)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural models enjoy widespread use across a variety of tasks and have grown to become crucial components of many industrial systems. Despite their effectiveness and ex- tensive popularity, they are not without their exploitable flaws. Initially applied to computer vision systems, the generation of adversarial examples is a process in which seemingly imper- ceptible perturbations are made to an image, with the purpose of inducing a deep learning based classifier to misclassify the image. Due to recent trends in speech processing, this has become a noticeable issue in speech recognition models. In late 2017, an attack was shown to be quite effective against the Speech Commands classification model. Limited-vocabulary speech classifiers, such as the Speech Commands model, are used quite frequently in a variety of applications, particularly in managing automated attendants in telephony contexts. As such, adversarial examples produced by this attack could have real-world consequences. While previous work in defending against these adversarial examples has investigated using audio preprocessing to reduce or distort adversarial noise, this work explores the idea of flooding particular frequency bands of an audio signal with random noise in order to detect adversarial examples. This technique of flooding, which does not require retraining or modifying the model, is inspired by work done in computer vision and builds on the idea that speech classifiers are relatively robust to natural noise. A combined defense incorporating 5 different frequency bands for flooding the signal with noise outperformed other existing defenses in the audio space, detecting adversarial examples with 91.8% precision and 93.5% recall.more » « less
-
Li, Wenzhong (Ed.)In recent years, a series of researches have revealed that the Deep Neural Network (DNN) is vulnerable to adversarial attack, and a number of attack methods have been proposed. Among those methods, an extremely sly type of attack named the one-pixel attack can mislead DNNs to misclassify an image via only modifying one pixel of the image, leading to severe security threats to DNN-based information systems. Currently, no method can really detect the one-pixel attack, for which the blank will be filled by this paper. This paper proposes two detection methods, including trigger detection and candidate detection. The trigger detection method analyzes the vulnerability of DNN models and gives the most suspected pixel that is modified by the one-pixel attack. The candidate detection method identifies a set of most suspected pixels using a differential evolution-based heuristic algorithm. The real-data experiments show that the trigger detection method has a detection success rate of 9.1%, and the candidate detection method achieves a detection success rate of 30.1%, which can validate the effectiveness of our methods.more » « less
-
An adversarial attack is an exploitative process in which minute alterations are made to natural inputs, causing the inputs to be misclassified by neural models. In the field of speech recognition, this has become an issue of increasing significance. Although adversarial attacks were originally introduced in computer vision, they have since infiltrated the realm of speech recognition. In 2017, a genetic attack was shown to be quite potent against the Speech Commands Model. Limited-vocabulary speech classifiers, such as the Speech Commands Model, are used in a variety of applications, particularly in telephony; as such, adversarial examples produced by this attack pose as a major security threat. This paper explores various methods of detecting these adversarial examples with combinations of audio preprocessing. One particular combined defense incorporating compressions, speech coding, filtering, and audio panning was shown to be quite effective against the attack on the Speech Commands Model, detecting audio adversarial examples with 93.5% precision and 91.2% recall.more » « less
-
The wide deployment of Deep Neural Networks (DNN) in high-performance cloud computing platforms brought to light multi-tenant cloud field-programmable gate arrays (FPGA) as a popular choice of accelerator to boost performance due to its hardware reprogramming flexibility. Such a multi-tenant FPGA setup for DNN acceleration potentially exposes DNN interference tasks under severe threat from malicious users. This work, to the best of our knowledge, is the first to explore DNN model vulnerabilities in multi-tenant FPGAs. We propose a novel adversarial attack framework: Deep-Dup, in which the adversarial tenant can inject adversarial faults to the DNN model in the victim tenant of FPGA. Specifically, she can aggressively overload the shared power distribution system of FPGA with malicious power-plundering circuits, achieving adversarial weight duplication (AWD) hardware attack that duplicates certain DNN weight packages during data transmission between off-chip memory and on-chip buffer, to hijack the DNN function of the victim tenant. Further, to identify the most vulnerable DNN weight packages for a given malicious objective, we propose a generic vulnerable weight package searching algorithm, called Progressive Differential Evolution Search (P-DES), which is, for the first time, adaptive to both deep learning white-box and black-box attack models. The proposed Deep-Dup is experimentally validated in a developed multi-tenant FPGA prototype, for two popular deep learning applications, i.e., Object Detection and Image Classification. Successful attacks are demonstrated in six popular DNN architectures (e.g., YOLOv2, ResNet-50, MobileNet, etc.) on three datasets (COCO, CIFAR-10, and ImageNet).more » « less