skip to main content


Title: Adapting Sequence to Sequence Models for Text Normalization in Social Media
Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-theshelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.  more » « less
Award ID(s):
1801652
NSF-PAR ID:
10099047
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ... International AAAI Conference on Weblogs and Social Media
Volume:
13
Issue:
1
ISSN:
2334-0770
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    During disasters, it is critical to deliver emergency information to appropriate first responders. Name-based information delivery provides efficient, timely dissemination of relevant content to first responder teams assigned to different incident response roles. People increasingly depend on social media for communicating vital information, using free-form text. Thus, a method that delivers these social media posts to the right first responders can significantly improve outcomes. In this paper, we propose FLARE, a framework using 'Social Media Engines' (SMEs) to map social media posts (SMPs), such as tweets, to the right names. SMEs perform natural language processing-based classification and exploit several machine learning capabilities, in an online real-time manner. To reduce the manual labeling effort required for learning during the disaster, we leverage active learning, complemented by dispatchers with specific domain-knowledge performing limited labeling. We also leverage federated learning across various public-safety departments with specialized knowledge to handle notifications related to their roles in a cooperative manner. We implement three different classifiers: for incident relevance, organization, and fine-grained role prediction. Each class is associated with a specific subset of the namespace graph. The novelty of our system is the integration of the namespace with federated active learning and inference procedures to identify and deliver vital SMPs to the right first responders in a distributed multi-organization environment, in real-time. Our experiments using real-world data, including tweets generated by citizens during the wildfires in California in 2018, show our approach outperforming both a simple keyword-based classification and several existing NLP-based classification techniques. 
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. null (Ed.)
    The explosion of user-generated content (UGC)—e.g. social media posts and comments and and reviews—has motivated the development of NLP applications tailored to these types of informal texts. Prevalent among these applications have been sentiment analysis and machine translation (MT). Grounded in the observation that UGC features highly idiomatic and sentiment-charged language and we propose a decoder-side approach that incorporates automatic sentiment scoring into the MT candidate selection process. We train monolingual sentiment classifiers in English and Spanish and in addition to a multilingual sentiment model and by fine-tuning BERT and XLM-RoBERTa. Using n-best candidates generated by a baseline MT model with beam search and we select the candidate that minimizes the absolute difference between the sentiment score of the source sentence and that of the translation and and perform two human evaluations to assess the produced translations. Unlike previous work and we select this minimally divergent translation by considering the sentiment scores of the source sentence and translation on a continuous interval and rather than using e.g. binary classification and allowing for more fine-grained selection of translation candidates. The results of human evaluations show that and in comparison to the open-source MT baseline model on top of which our sentiment-based pipeline is built and our pipeline produces more accurate translations of colloquial and sentiment-heavy source texts. 
    more » « less
  4. The concern regarding users’ data privacy has risen to its highest level due to the massive increase in communication platforms, social networking sites, and greater users’ participation in online public discourse. An increasing number of people exchange private information via emails, text messages, and social media without being aware of the risks and implications. Researchers in the field of Natural Language Processing (NLP) have concentrated on creating tools and strategies to identify, categorize, and sanitize private information in text data since a substantial amount of data is exchanged in textual form. However, most of the detection methods solely rely on the existence of pre-identified keywords in the text and disregard the inference of underlying meaning of the utterance in a specific context. Hence, in some situations these tools and algorithms fail to detect disclosure, or the produced results are miss classified. In this paper, we propose a multi-input, multi-output hybrid neural network which utilizes transfer-learning, linguistics, and metadata to learn the hidden patterns. Our goal is to better classify disclosure/non-disclosure content in terms of the context of situation. We trained and evaluated our model on a human-annotated ground truth dataset, containing a total of 5,400 tweets. The results show that the proposed model was able to identify privacy disclosure through tweets with an accuracy of 77.4% while classifying the information type of those tweets with an impressive accuracy of 99%, by jointly learning for two separate tasks.

     
    more » « less
  5. null (Ed.)
    An important means for disseminating information in social media platforms is by including URLs that point to external sources in user posts. In Twitter, we estimate that about 21% of the daily stream of English-language tweets contain URLs. We notice that NLP tools make little attempt at understanding the relationship between the content of the URL and the text surrounding it in a tweet. In this work, we study the structure of tweets with URLs relative to the content of the Web documents pointed to by the URLs. We identify several segments classes that may appear in a tweet with URLs, such as the title of a Web page and the user's original content. Our goals in this paper are: introduce, define, and analyze the segmentation problem of tweets with URLs, develop an effective algorithm to solve it, and show that our solution can benefit sentiment analysis on Twitter. We also show that the problem is an instance of the block edit distance problem, and thus an NP-hard problem. 
    more » « less