skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classification of Health-Related Social Media Posts: Evaluation of Post Content–Classifier Models and Analysis of User Demographics
Background The increasing volume of health-related social media activity, where users connect, collaborate, and engage, has increased the significance of analyzing how people use health-related social media. Objective The aim of this study was to classify the content (eg, posts that share experiences and seek support) of users who write health-related social media posts and study the effect of user demographics on post content. Methods We analyzed two different types of health-related social media: (1) health-related online forums—WebMD and DailyStrength—and (2) general online social networks—Twitter and Google+. We identified several categories of post content and built classifiers to automatically detect these categories. These classifiers were used to study the distribution of categories for various demographic groups. Results We achieved an accuracy of at least 84% and a balanced accuracy of at least 0.81 for half of the post content categories in our experiments. In addition, 70.04% (4741/6769) of posts by male WebMD users asked for advice, and male users’ WebMD posts were more likely to ask for medical advice than female users’ posts. The majority of posts on DailyStrength shared experiences, regardless of the gender, age group, or location of their authors. Furthermore, health-related posts on Twitter and Google+ were used to share experiences less frequently than posts on WebMD and DailyStrength. Conclusions We studied and analyzed the content of health-related social media posts. Our results can guide health advocates and researchers to better target patient populations based on the application type. Given a research question or an outreach goal, our results can be used to choose the best online forums to answer the question or disseminate a message.  more » « less
Award ID(s):
1901379
PAR ID:
10161340
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
JMIR Public Health and Surveillance
Volume:
6
Issue:
2
ISSN:
2369-2960
Page Range / eLocation ID:
e14952
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wren, Jonathan (Ed.)
    Abstract Motivation Substance abuse constitutes one of the major contemporary health epidemics. Recently, the use of social media platforms has garnered interest as a novel source of data for drug addiction epidemiology. Often however, the language used in such forums comprises slang and jargon. Currently, there are no publicly available resources to automatically analyse the esoteric language-use in the social media drug-use sub-culture. This lacunae introduces critical challenges for interpreting, sensemaking and modeling of addiction epidemiology using social media. Results Drug-Use Insights (DUI) is a public and open-source web application to address the aforementioned deficiency. DUI is underlined by a hierarchical taxonomy encompassing 108 different addiction related categories consisting of over 9,000 terms, where each category encompasses a set of semantically related terms. These categories and terms were established by utilizing thematic analysis in conjunction with term embeddings generated from 7,472,545 Reddit posts made by 1,402,017 redditors. Given post(s) from social media forums such as Reddit and Twitter, DUI can be used foremost to identify constituent terms related to drug use. Furthermore, the DUI categories and integrated visualization tools can be leveraged for semantic- and exploratory analysis. To the best of our knowledge, DUI utilizes the largest number of substance use and recovery social media posts used in a study and represents the first significant online taxonomy of drug abuse terminology. Availability The DUI web server and source code are available at: http://haddock9.sfsu.edu/insight/ Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Al-Nofaie, H (Ed.)
    Prior research has demonstrated relationships between personality traits of social media users and the language used in their posts. Few studies have examined whether there are relationships between personality traits of users and how they use emojis in their social media posts. Emojis are digital pictographs used to express ideas and emotions. There are thousands of emojis, which depict faces with expressions, objects, animals, and activities. We conducted a study with two samples (n = 76 andn = 245) in which we examined how emoji use on X (formerly Twitter) related to users’ personality traits and language use in posts. Personality traits were assessed from participants in an online survey. With participants’ consent, we analyzed word usage in posts. Word frequencies were calculated using the Linguistic Inquiry Word Count (LIWC). In both samples, the results showed that those who used the most emojis had the lowest levels of openness to experience. Emoji use was unrelated to the other personality traits. In sample 1, emoji use was also related to use of words related to family, positive emotion, and sadness and less frequent use of articles and words related to insight. In sample 2, more frequent use of emojis in posts was related to more frequent use ofyoupronouns,Ipronouns, and more frequent use of negative function words and words related to time. The results support the view that social media users’ characteristics may be gleaned from the content of their social media posts. 
    more » « less
  3. We conducted a thematic content analysis of 4,180 posts by adolescents (ages 12-17) on an online peer support mental health forum to understand what and how adolescents talk about their online sexual interactions. Youth used the platform to seek support (83%), connect with others (15%), and give advice (5%) about sexting, their sexual orientation, sexual abuse, and explicit content. Females often received unwanted nudes from strangers and struggled with how to turn down sexting requests from people they knew. Meanwhile, others who sought support complained that they received unwanted sexual solicitations while doing so—to the point that adolescents gave advice to one another on which users to stay away from. Our research provides insight into the online sexual experiences of adolescents and how they seek support around these issues. We discuss how to design peer-based social media platforms to support the well-being and safety of youth. 
    more » « less
  4. Abstract Misinformation about the COVID-19 pandemic proliferated widely on social media platforms during the course of the health crisis. Experts have speculated that consuming misinformation online can potentially worsen the mental health of individuals, by causing heightened anxiety, stress, and even suicidal ideation. The present study aims to quantify the causal relationship between sharing misinformation, a strong indicator of consuming misinformation, and experiencing exacerbated anxiety. We conduct a large-scale observational study spanning over 80 million Twitter posts made by 76,985 Twitter users during an 18.5 month period. The results from this study demonstrate that users who shared COVID-19 misinformation experienced approximately two times additional increase in anxiety when compared to similar users who did not share misinformation. Socio-demographic analysis reveals that women, racial minorities, and individuals with lower levels of education in the United States experienced a disproportionately higher increase in anxiety when compared to the other users. These findings shed light on the mental health costs of consuming online misinformation. The work bears practical implications for social media platforms in curbing the adverse psychological impacts of misinformation, while also upholding the ethos of an online public sphere. 
    more » « less
  5. Social media platforms provide users with various ways of interacting with each other, such as commenting, reacting to posts, sharing content, and uploading pictures. Facebook is one of the most popular platforms, and its users frequently share and reshare posts, including research articles. Moreover, the reactions feature on Facebook allows users to express their feelings towards the content they view, providing valuable data for analysis. This study aims to predict the emotional impact of Facebook posts relating to research articles. We collected data on Facebook posts related to various scientific research domains, including Health Sciences, Social Sciences, Dentistry, Arts, and Humanities. We observed Facebook users’ reactions towards research articles and posts and found that ‘Like’ reactions were the most common. We also noticed that research articles from the Dentistry research domain received a lot of ‘Haha’ reactions. We used machine learning models to predict the sentiment of Facebook posts related to research articles. We used features such as the research article’s title sentiment, abstract sentiment, abstract length, author count, and research domain to build the models. We used five classifiers: Random Forest, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Naïve Bayes. The models were evaluated using accuracy, precision, recall, and F-1 score metrics. The Random Forest classifier was the best model for two- and three-class labels, achieving accuracy measures of 86% and 66%, respectively. We also evaluated the feature importance for the Random Forest model and found that the sentiment of the research article’s title is crucial in predicting the sentiment of the Facebook post. This study has substantial implications for public engagement in science-related messages. The emotional reactions of Facebook users towards research articles and posts can provide valuable insights into public engagement in science, and predicting the emotional impact of Facebook posts related to research articles can help researchers understand how the public perceives scientific research. The findings of the study can aid researchers in effectively communicating their research and engaging the public in scientific discourse. 
    more » « less