A fundamental question in many data analysis settings is the problem of discerning the ``natural'' dimension of a data set. That is, when a data set is drawn from a manifold (possibly with noise), a meaningful aspect of the data is the dimension of that manifold. Various approaches exist for estimating this dimension, such as the method of Secant-Avoidance Projection (SAP). Intuitively, the SAP algorithm seeks to determine a projection which best preserves the lengths of all secants between points in a data set; by applying the algorithm to find the best projections to vector spaces of various dimensions, one may infer the dimension of the manifold of origination. That is, one may learn the dimension at which it is possible to construct a diffeomorphic copy of the data in a lower-dimensional Euclidean space. Using Whitney's embedding theorem, we can relate this information to the natural dimension of the data. A drawback of the SAP algorithm is that a data set with $$n$$ points has $n(n-1)/2$ secants, making the computation and storage of all secants infeasible for very large data sets. In this paper, we propose a novel algorithm that generalizes the SAP algorithm with an emphasis on addressing this issue. That is, we propose a hierarchical secant-based dimensionality-reduction method, which can be employed for data sets where explicitly calculating all secants is not feasible.
more »
« less
Too many secants: a hierarchical approach to secant-based dimensionality reduction on large data sets
A fundamental question in many data analysis settings is the problem of discerning the “natural” dimension of a data set. That is, when a data set is drawn from a manifold (possibly with noise), a meaningful aspect of the data is the dimension of that manifold. Various approaches exist for estimating this dimension, such as the method of Secant-Avoidance Projection (SAP). Intuitively, the SAP algorithm seeks to determine a projection which best preserves the lengths of all secants between points in a data set; by applying the algorithm to find the best projections to vector spaces of various dimensions, one may infer the dimension of the manifold of origination. That is, one may learn the dimension at which it is possible to construct a diffeomorphic copy of the data in a lower-dimensional Euclidean space. Using Whitney's embedding theorem, we can relate this information to the natural dimension of the data. A drawback of the SAP algorithm is that a data set with T points has O(T 2 ) secants, making the computation and storage of all secants infeasible for very large data sets. In this paper, we propose a novel algorithm that generalizes the SAP algorithm with an emphasis on addressing this issue. That is, we propose a hierarchical secant-based dimensionality-reduction method, which can be employed for data sets where explicitly calculating all secants is not feasible.
more »
« less
- Award ID(s):
- 1633830
- PAR ID:
- 10099075
- Date Published:
- Journal Name:
- 2018 IEEE High Performance extreme Computing Conference (HPEC)
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dimensionality-reduction techniques are a fundamental tool for extracting useful information from high-dimensional data sets. Because secant sets encode manifold geometry, they are a useful tool for designing meaningful data-reduction algorithms. In one such approach, the goal is to construct a projection that maximally avoids secant directions and hence ensures that distinct data points are not mapped too close together in the reduced space. This type of algorithm is based on a mathematical framework inspired by the constructive proof of Whitney's embedding theorem from differential topology. Computing all (unit) secants for a set of points is by nature computationally expensive, thus opening the door for exploitation of GPU architecture for achieving fast versions of these algorithms. We present a polynomial-time data-reduction algorithm that produces a meaningful low-dimensional representation of a data set by iteratively constructing improved projections within the framework described above. Key to our algorithm design and implementation is the use of GPUs which, among other things, minimizes the computational time required for the calculation of all secant lines. One goal of this report is to share ideas with GPU experts and to discuss a class of mathematical algorithms that may be of interest to the broader GPU community.more » « less
-
Dimensionality-reduction methods are a fundamental tool in the analysis of large datasets. These algorithms work on the assumption that the "intrinsic dimension" of the data is generally much smaller than the ambient dimension in which it is collected. Alongside their usual purpose of mapping data into a smaller-dimensional space with minimal information loss, dimensionality-reduction techniques implicitly or explicitly provide information about the dimension of the dataset.In this paper, we propose a new statistic that we call the kappa-profile for analysis of large datasets. The kappa-profile arises from a dimensionality-reduction optimization problem: namely that of finding a projection that optimally preserves the secants between points in the dataset. From this optimal projection we extract kappa, the norm of the shortest projected secant from among the set of all normalized secants. This kappa can be computed for any dimension k; thus the tuple of kappa values (indexed by dimension) becomes a kappa-profile. Algorithms such as the Secant-Avoidance Projection algorithm and the Hierarchical Secant-Avoidance Projection algorithm provide a computationally feasible means of estimating the kappa-profile for large datasets, and thus a method of understanding and monitoring their behavior. As we demonstrate in this paper, the kappa-profile serves as a useful statistic in several representative settings: weather data, soundscape data, and dynamical systems data.more » « less
-
Abstract In order to better understand manifold neural networks (MNNs), we introduce Manifold Filter-Combine Networks (MFCNs). Our filter-combine framework parallels the popular aggregate-combine paradigm for graph neural networks (GNNs) and naturally suggests many interesting families of MNNs which can be interpreted as manifold analogues of various popular GNNs. We propose a method for implementing MFCNs on high-dimensional point clouds that relies on approximating an underlying manifold by a sparse graph. We then prove that our method is consistent in the sense that it converges to a continuum limit as the number of data points tends to infinity, and we numerically demonstrate its effectiveness on real-world and synthetic data sets.more » « less
-
Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) are fundamental methods in machine learning for dimensionality reduction. The former is a technique for finding this approximation in finite dimensions and the latter is often in an infinite dimensional Reproducing Kernel Hilbert-space (RKHS). In this paper, we present a geometric framework for computing the principal linear subspaces in both situations as well as for the robust PCA case, that amounts to computing the intrinsic average on the space of all subspaces: the Grassmann manifold. Points on this manifold are defined as the subspaces spanned by K -tuples of observations. The intrinsic Grassmann average of these subspaces are shown to coincide with the principal components of the observations when they are drawn from a Gaussian distribution. We show similar results in the RKHS case and provide an efficient algorithm for computing the projection onto the this average subspace. The result is a method akin to KPCA which is substantially faster. Further, we present a novel online version of the KPCA using our geometric framework. Competitive performance of all our algorithms are demonstrated on a variety of real and synthetic data sets.more » « less
An official website of the United States government

