skip to main content


Title: Towards the development of personalized learning companion robots for early speech and language assessment
This pilot study investigated the feasibility of implementing child-friendly robots for administering clinical and educational assessments with young children. JIBO, a social robot, was used as a new interface to administer a letter and number naming task and the 3rd Goldman Fristoe Test of Articulation (GFTA-3). The reason for using these assessment materials is to develop robust automatic speech recognition (ASR) and automated social interaction systems that can aid in administering such assessments more efficiently. The voice of JIBO simulates interaction with a peer, and images and playful transitions are displayed on JIBO’s face/screen. Several preliminary observations with 15 pre-kindergarten and 18 kindergarten students included the rate of task completion and strategies to increase student participation. Changes to the length and prompt delivery of the assessment protocol were considered based on these observations, and further observations are planned for future work with an additional cohort of 43 prekindergarten and 50 kindergarten students. Recommendations are given to inform future implementations and analyses.  more » « less
Award ID(s):
1734380
NSF-PAR ID:
10099084
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2019 Annual Meeting of the American Educational Research Association (AERA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents the results of a pilot study that introduces social robots into kindergarten and first-grade classroom tasks. This study aims to understand 1) how effective social robots are in administering educational activities and assessments, and 2) if these interactions with social robots can serve as a gateway into learning about robotics and STEM for young children. We administered a commonly-used assessment (GFTA3) of speech production using a social robot and compared the quality of recorded responses to those obtained with a human assessor. In a comparison done between 40 children, we found no significant differences in the student responses between the two conditions over the three metrics used: word repetition accuracy, number of times additional help was needed, and similarity of prosody to the assessor. We also found that interactions with the robot were successfully able to stimulate curiosity in robotics, and therefore STEM, from a large number of the 164 student participants. 
    more » « less
  2. When measuring academic skills among students whose primary language is not English, standardized assessments are often provided in languages other than English. The degree to which alternate-language test translations yield unbiased, equitable assessment must be evaluated; however, traditional methods of investigating measurement equivalence are susceptible to confounding group differences. The primary purposes of this study were to investigate differential item functioning (DIF) and item bias across Spanish and English forms of an assessment of early mathematics skills. Secondary purposes were to investigate the presence of selection bias and demonstrate a novel approach for investigating DIF that uses a regression discontinuity design framework to control for selection bias. Data were drawn from 1,750 Spanish-speaking Kindergarteners participating in the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999, who were administered either the Spanish or English version of the mathematics assessment based on their performance on an English language screening measure. Evidence of selection bias—differences between groups in SES, age, approaches to learning, self-control, social interaction, country of birth, childcare, household composition and number in the home, books in the home, and parent involvement—highlighted limitations of a traditional approach for investigating DIF that only controlled for ability. When controlling for selection bias, only 11% of items displayed DIF, and subsequent examination of item content did not suggest item bias. Results provide evidence that the Spanish translation of the ECLS-K mathematics assessment is an equitable and unbiased assessment accommodation for young dual language learners. 
    more » « less
  3. Olanoff, D ; Johnson, K. ; Spitzer, S (Ed.)
    A way to evaluate an assessment’s worth is in its contributions to student learning (Cronbach, 1988). “Classrooms are complex social environments. Economic, language, cultural, and mental health issues are just some of the key variables that need to be considered in relation to students [learning]” (Leighton, 2020, p. 27). Teachers provide a unique influence on their students’ learning through their beliefs, content knowledge, and pedagogical content knowledge (Brookhart, 2003). A classroom’s social context is an area where teacher-created assessments differ from externally-developed standardized assessments. One goal of standardized testing is to eliminate psychometric noise like social contexts by attempting to account for factors not related to the construct being measured (AERA et al., 2014). On the other hand, teacher-created assessments are contextually relevant as they are developed with certain students in mind (Brookhart, 2003). Teacher-created assessments are more likely to align with a unique social context of a classroom. The purpose of this study is to explore middle grades math teachers assessment practices and impact on student learning. 
    more » « less
  4. Abstract Background

    Engineers operate in an increasingly global environment, making it important that engineering students develop global engineering competency to prepare them for success in the workplace. To understand this learning, we need assessment approaches that go beyond traditional self‐report surveys. A previous study (Jesiek et al.,Journal of Engineering Education2020; 109(3):1–21) began this process by developing a situational judgment test (SJT) to assess global engineering competency based in the Chinese context and administering it to practicing engineers.

    Purpose

    We built on this previous study by administering the SJT to engineering students to explore what prior experiences related to their SJT performance and how their SJT performance compared with practicing engineers' performance on the SJT.

    Method

    Engineering students completed a survey including the SJT and related self‐report survey instruments. We collected data from three groups of students: those who had studied abroad in China; those who had studied abroad elsewhere; and those who had not studied abroad.

    Results

    We found that students' SJT performance did not relate to their scores on the self‐report instruments, but did relate to their participation in study abroad programs. The students also performed better on the SJT when compared to the practicing engineers.

    Conclusions

    Our results highlight the need to use multiple forms of assessment for global engineering competence. Although building evidence for the validity of the Global Engineering Competency China SJT is an ongoing process, this data collection technique may provide new insights on global engineering competency compared to traditionally used assessments.

     
    more » « less
  5. Background. Middle school students’ math anxiety and low engagement have been major issues in math education. In order to reduce their anxiety and support their math learning, game-based learning (GBL) has been implemented. GBL research has underscored the role of social dynamics to facilitate a qualitative understanding of students’ knowledge. Whereas students’ peer interactions have been deemed a social dynamic, the relationships among peer interaction, task efficiency, and learning engagement were not well understood in previous empirical studies.

    Method. This mixed-method research implemented E-Rebuild, which is a 3D architecture game designed to promote students’ math problem-solving skills. We collected a total of 102 50-minutes gameplay sessions performed by 32 middle school students. Using video-captured and screen-recorded gameplaying sessions, we implemented behavior observations to measure students’ peer interaction efficiency, task efficiency, and learning engagement. We used association analyses, sequential analysis, and thematic analysis to explain how peer interaction promoted students’ task efficiency and learning engagement.

    Results. Students’ peer interactions were negatively related to task efficiency and learning engagement. There were also different gameplay patterns by students’ learning/task-relevant peer-interaction efficiency (PIE) level. Students in the low PIE group tended to progress through game tasks more efficiently than those in the high PIE group. The results of qualitative thematic analysis suggested that the students in the low PIE group showed more reflections on game-based mathematical problem solving, whereas those with high PIE experienced distractions during gameplay.

    Discussion. This study confirmed that students’ peer interactions without purposeful and knowledge-constructive collaborations led to their low task efficiency, as well as low learning engagement. The study finding shows further design implications: (1) providing in-game prompts to stimulate students’ math-related discussions and (2) developing collaboration contexts that legitimize students’ interpersonal knowledge exchanges with peers.

     
    more » « less