skip to main content


Title: A Novel Side-Channel in Real-Time Schedulers
We demonstrate the presence of a novel sched- uler side-channel in preemptive, fixed-priority real-time systems (RTS); examples of such systems can be found in automotive systems, avionic systems, power plants and industrial control systems among others. This side-channel can leak important timing information – the precise points in time when a periodic task will execute in the future. This information can then be used to launch devastating attacks, two of which are demonstrated here (on real hardware platforms). Note that it is not easy to capture this timing information due to runtime variations in the schedules, the presence of multiple other tasks in the system and the typical constraints (e.g., deadlines) in the design of RTS. Our ScheduLeak algorithms demonstrate how to effectively exploit this side-channel. A complete implementation is presented on real operating systems (in Real-time Linux and FreeRTOS). Timing information leaked by ScheduLeak can significantly aid other, more advanced, attacks in better accomplishing their goals.  more » « less
Award ID(s):
1718952
NSF-PAR ID:
10099218
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings - IEEE Real-Time and Embedded Technology and Applications Symposium
ISSN:
1545-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The constant-time discipline is a software-based countermeasure used for protecting high assurance cryptographic implementations against timing side-channel attacks. Constant-time is effective (it protects against many known attacks), rigorous (it can be formalized using program semantics), and amenable to automated verification. Yet, the advent of micro-architectural attacks makes constant-time as it exists today far less useful. This paper lays foundations for constant-time programming in the presence of speculative and out-of-order execution. We present an operational semantics and a formal definition of constant-time programs in this extended setting. Our semantics eschews formalization of microarchitectural features (that are instead assumed under adversary control), and yields a notion of constant-time that retains the elegance and tractability of the usual notion. We demonstrate the relevance of our semantics in two ways: First, by contrasting existing Spectre-like attacks with our definition of constant-time. Second, by implementing a static analysis tool, Pitchfork, which detects violations of our extended constant-time property in real world cryptographic libraries. 
    more » « less
  2. Scheduler side-channels can leak critical information in real-time systems, thus posing serious threats to many safety-critical applications. The main culprit is the inherent determinism in the runtime timing behavior of such systems, e.g., the (expected) periodic behavior of critical tasks. In this paper, we introduce the notion of "schedule indistinguishability/", inspired by work in differential privacy, that introduces diversity into the schedules of such systems while offering analyzable security guarantees. We achieve this by adding a sufficiently large (controlled) noise to the task schedules in order to break their deterministic execution patterns. An "epsilon-Scheduler" then implements schedule indistinguishability in real-time Linux. We evaluate our system using two real applications: (a) an autonomous rover running on a real hardware platform (Raspberry Pi) and (b) a video streaming application that sends data across large geographic distances. Our results show that the epsilon-Scheduler offers better protection against scheduler side-channel attacks in real-time systems while still maintaining good performance and quality-of-service(QoS) requirements. 
    more » « less
  3. Typical cybersecurity solutions emphasize on achieving defense functionalities. However, execution efficiency and scalability are equally important, especially for real-world deployment. Straightforward mappings of cybersecurity applications onto HPC platforms may significantly underutilize the HPC devices’ capacities. On the other hand, the sophisticated implementations are quite difficult: they require both in-depth understandings of cybersecurity domain-specific characteristics and HPC architecture and system model. In our work, we investigate three sub-areas in cybersecurity, including mobile software security, network security, and system security. They have the following performance issues, respectively: 1) The flow- and context-sensitive static analysis for the large and complex Android APKs are incredibly time-consuming. Existing CPU-only frameworks/tools have to set a timeout threshold to cease the program analysis to trade the precision for performance. 2) Network intrusion detection systems (NIDS) use automata processing as its searching core and requires line-speed processing. However, achieving high-speed automata processing is exceptionally difficult in both algorithm and implementation aspects. 3) It is unclear how the cache configurations impact time-driven cache side-channel attacks’ performance. This question remains open because it is difficult to conduct comparative measurement to study the impacts. In this dissertation, we demonstrate how application-specific characteristics can be leveraged to optimize implementations on various types of HPC for faster and more scalable cybersecurity executions. For example, we present a new GPU-assisted framework and a collection of optimization strategies for fast Android static data-flow analysis that achieve up to 128X speedups against the plain GPU implementation. For network intrusion detection systems (IDS), we design and implement an algorithm capable of eliminating the state explosion in out-of-order packet situations, which reduces up to 400X of the memory overhead. We also present tools for improving the usability of Micron’s Automata Processor. To study the cache configurations’ impact on time-driven cache side-channel attacks’ performance, we design an approach to conducting comparative measurement. We propose a quantifiable success rate metric to measure the performance of time-driven cache attacks and utilize the GEM5 platform to emulate the configurable cache. 
    more » « less
  4. null (Ed.)
    Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy. 
    more » « less
  5. Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy. 
    more » « less