Learning network topology from partial knowledge of its connectivity is an important objective in practical scenarios of communication networks and social-media networks. Representing such networks as connected graphs, exploring and recovering connectivity information between network nodes can help visualize the network topology and improve network utility. This work considers the use of simple hop distance measurement obtained from a fraction of anchor/source nodes to reconstruct the node connectivity relationship for large scale networks of unknown connection topology. Our proposed approach consists of two steps. We first develop a tree-based search strategy to determine constraints on unknown network edges based on the hop count measurements. We then derive the logical distance between nodes based on principal component analysis (PCA) of the measurement matrix and propose a binary hypothesis test for each unknown edge. The proposed algorithm can effectively improve both the accuracy of connectivity detection and the successful delivery rate in data routing applications.
more »
« less
X-Rank: Explainable Ranking in Complex Multi-Layered Networks
In this paper we present a web-based prototype for an explainable ranking algorithm in multi-layered networks, incorporating both network topology and knowledge information. While traditional ranking algorithms such as PageRank and HITS are important tools for exploring the underlying structure of networks, they have two fundamental limitations in their efforts to generate high accuracy rankings. First, they are primarily focused on network topology, leaving out additional sources of information (e.g. attributes, knowledge). Secondly, most algorithms do not provide explanations to the end-users on why the algorithm gives the specific ranking results, hindering the usability of the ranking information. We developed Xrank, an explainable ranking tool, to address these drawbacks. Empirical results indicate that our explainable ranking method not only improves ranking accuracy, but facilitates user understanding of the ranking by exploring the top influential elements in multi-layered networks. The web-based prototype (Xrank: http://www.x-rank.net) is currently online - we believe it will assist both researchers and practitioners looking to explore and exploit multi-layered network data.
more »
« less
- PAR ID:
- 10099222
- Date Published:
- Journal Name:
- CIKM '18 Proceedings of the 27th ACM International Conference on Information and Knowledge Management
- Page Range / eLocation ID:
- 1959 to 1962
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network mining plays a pivotal role in many high-impact application domains, including information retrieval, healthcare, social network analysis, security and recommender systems. State-of-the-art offers a wealth of sophisticated network mining algorithms, many of which have been widely adopted in real-world with superior empirical performance. Nonetheless, they often lack effective and efficient ways to characterize how the results of a given mining task relate to the underlying network structure. In this paper, we introduce network derivative mining problem. Given the input network and a specific mining algorithm, network derivative mining finds a derivative network whose edges measure the influence of the corresponding edges of the input network on the mining results. We envision that network derivative mining could be beneficial in a variety of scenarios, ranging from explainable network mining, adversarial network mining, sensitivity analysis on network structure, active learning, learning with side information to counterfactual learning on networks. We propose a generic framework for network derivative mining from the optimization perspective and provide various instantiations for three classic network mining tasks, including ranking, clustering, and matrix completion. For each mining task, we develop effective algorithm for constructing the derivative network based on influence function analysis, with numerous optimizations to ensure a linear complexity in both time and space. Extensive experimental evaluation on real-world datasets demonstrates the efficacy of the proposed framework and algorithms.more » « less
-
We propose a novel strategy for provenance tracing in random walk-based network diffusion algorithms, a problem that has been surprisingly overlooked in spite of the widespread use of diffusion algorithms in biological applications. Our path-based approach enables ranking paths by the magnitude of their contribution to each node’s score, offering insight into how information propagates through a network. Building on this capability, we introduce two quantitative measures: (i) path-based effective diffusion, which evaluates how well a diffusion algorithm leverages the full topology of a network, and (ii) diffusion betweenness, which quantifies a node’s importance in propagating scores. We applied our framework to SARS-CoV-2 protein interactors and human PPI networks. Provenance tracing of the Regularized Laplacian and Random Walk with Restart algorithms revealed that a substantial amount of a node’s score is contributed via multi-edge paths, demonstrating that diffusion algorithms exploit the non-local structure of the network. Analysis of diffusion betweenness identified proteins playing a critical role in score propagation; proteins with high diffusion betweenness are enriched with essential human genes and interactors of other viruses, supporting the biological interpretability of the metric. Finally, in a signaling network composed of causal interactions between human proteins, the top contributing paths showed strong overlap with COVID-19-related pathways. These results suggest that our path-based framework offers valuable insight into diffusion algorithms and can serve as a powerful tool for interpreting diffusion scores in a biologically meaningful context, complementing existing module- ornode-centric approaches in systems biology. The code is publicly available at https:// github.com/n-tasnina/provenance-tracing.git under the GNU General Public License v3.0.more » « less
-
null (Ed.)Ranking on networks plays an important role in many high-impact applications, including recommender systems, social network analysis, bioinformatics and many more. In the age of big data, a recent trend is to address the variety aspect of network ranking. Among others, two representative lines of research include (1) heterogeneous information network with different types of nodes and edges, and (2) network of networks with edges at different resolutions. In this paper, we propose a new network model named Network of Heterogeneous Information Networks (NeoHIN for short) that is capable of simultaneously modeling both different types of nodes/edges, and different edge resolutions. We further propose two new ranking algorithms on NeoHIN based on the cross-domain consistency principle. Experiments on synthetic and real-world networks show that our proposed algorithms are (1) effective, which outperform other existing methods, and (2) efficient, without additional time cost per iteration to their counterparts.more » « less
-
A novel green granular neural network (GGNN) with new fast software-FPGA co-designed learning is developed to reduce both CO2 emissions and energy consumption more effectively than popular neural networks with the traditional software-CPU-GPU-based learning. Different from traditional tedious CPU-GPU-based training algorithms using gradient descent methods and other methods such as genetic algorithms , the software-FPGA co-designed training algorithm may quickly solve a system of linear equations to directly calculate optimal values of hyperparameters of the GGNN. Initial simulation results indicates that the FPGA equation solver code ran faster than the Python equation solver code. Therefore, implementing the GGNN with software-FPGA co-designed learning is feasible. In addition, the shallow high-speed GGNN is explainable because it can generate interpretable granular If-Then rules. In the future, The GGNN will be evaluated by comparing with other machine learning models with traditional software-based learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by using popular datasets. New algorithms will be created to divide the inputs to different input groups that will be used to build different small-size GGNNs to solve the curse of dimensionality. Additionally, the explainable green granular convolutional neural network will be developed by using the GGNNs as basic building blocks to efficiently solve image recognition problems.more » « less
An official website of the United States government

