First-generation college students have entered the spotlight of educational research and reform. This shift in perspective has been covered in popular media, for example, in The Chronicle of Higher Education’s series entitled “Engine of Inequality,” which analyzes the challenges facing first-generation college students. However, engineering programs have been slower in responding to this new emphasis on first-generation college students, perhaps assuming that the lack of success of underrepresented groups is a result of deficiencies in the students’ background and preparation. Our research challenges this assumption by explicitly investigating the connections between first-generation engineering students’ success and their experiences within higher education, using a large-scale quantitative survey. Whereas the deficiency perspective focuses on what these students lack and how they need to change themselves in order to adapt to engineering undergraduate curricula, this study seeks to understand how first-generation college student’s funds of knowledge (i.e., family and cultural knowledge developed by growing up in poor and/or working households) can be leveraged in their engineering work and the factors that contribute to their success in engineering. Using ethnographic data of first-generation college students in engineering, from prior work, seven themes were created to capture aspects of students’ funds of knowledge. The themes were classified as follows: community networks, lived experiences, tinkering knowledge from home, tinkering knowledge from work, perspective taking, reading people, and translation among people. To date, the funds of knowledge themes have been validated, at the first level, using exploratory factor analysis with a broad range of engineering students from first-years to fourth-year of higher at two institutions, one in the Midwest and one in the mountain region. Convenience sampling was used to test and validate the funds of knowledge survey constructs. We are currently in our second data collection process. The large-scale survey will be administered to upperclassman and alumni at five participating institutions across the United States, i.e., in a large public polytechnic, small selective private polytechnic, large land grant, large sub-urban public, and large public universities.
more »
« less
Recognizing Engineering Students’ Funds of Knowledge: Creating and Validating Survey Measures
This research base paper examines students who are the first in their families to attend college. Our research seeks to understand the role students’ funds of knowledge makes in first-generation college students’ undergraduate experience. Funds of knowledge are the set of formal/informal knowledge and skills that students learn through family, friends, and communities outside of academic institutions. This paper reports funds of knowledge themes relevant to first-generation college students in engineering and the process of gathering validity evidence to support the funds of knowledge themes. Using ethnographic and interview data, six themes emerged: connecting experiences, community networks, tinkering knowledge, perspective taking, reading people, and mediational skills. Pilot data collected at two institutions were used to run exploratory factor analysis to verify the underlying theoretical structures among the themes. Results of the exploratory factor analysis found that almost all items reliably loaded onto their respective constructs. The funds of knowledge identified in this study are not an exhaustive account, nevertheless uncovering these hidden assets can support first-generation college students to see their experiences as equally valuable knowledge in engineering. We are currently in an ongoing process of collecting a second dataset to perform a confirmatory factor analysis, i.e., the next phase of the validation process for survey instrument development.
more »
« less
- Award ID(s):
- 1734044
- PAR ID:
- 10099256
- Date Published:
- Journal Name:
- Review & directory - American Society for Engineering Education
- ISSN:
- 0092-4326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundStudents who are the first in their families to attend college are an integral part of undergraduate engineering programs. Growing bodies of research argue that educators could better support these students if they understood the unique backgrounds, experiences, and knowledge they bring with them to higher education. Purpose/HypothesisThe purpose of this article is twofold. First, we identify salient funds of knowledge used by a group of first‐generation college students in their educational and work‐related experiences. Secondly, we use the funds of knowledge identified in our participants' experiences to create a survey instrument. Design/MethodA mixed methods approach was used. Ethnographic interview data of six first‐generation college students were used to hypothesize constructs and create survey items. Survey data were collected from 812 students. Exploratory and confirmatory factor analyses were used to verify the underlying theoretical structures among the survey items and hypothesized constructs. ResultsValidity evidence supported a 10‐factor model as opposed to the hypothesized 6‐factor model. The 10 latent constructs that make up the funds of knowledge instrument are as follows: tinkering knowledge from home, tinkering knowledge from work, connecting experiences, networks from family members, networks from college friends, networks from coworkers, networks from neighborhood friends, perspective taking, reading people, and mediating ability. ConclusionsRecognizing first‐generation college students' funds of knowledge is a first step to creating curricular spaces and experiences that better serve them. A survey scale allows educators to empirically examine how these accumulated bodies of knowledge are transmitted to capital, create advantages in engineering, and provides a useful tool to bridge students' knowledge in the classroom.more » « less
-
First-generation college students in engineering accumulate bodies of knowledge through their working-class families. In our ethnographic data of first-generation college students, we identified tinkering knowledge from home and from work, perspective taking, mediational ability, and connecting experiences as knowledge sources brought to engineering. The purpose of this paper was to understand how first-generation college students’ accumulated bodies of knowledge (i.e., funds of knowledge) support their beliefs about performing well in engineering coursework, feeling a sense of belonging in the classroom, and certainty of graduating. Data for this study came from a survey administered in the Fall of 2018 from ten universities across the US. In this study, only the sample of students who indicated their parents had less than a bachelor’s degree (n = 378) were used. A structural equation modeling technique was employed to examine several interconnected research questions pertaining to funds of knowledge, performance/competence beliefs, classroom belongingness, and certainty of graduating with an engineering degree. Our analysis demonstrates that the accumulated bodies of knowledge obtained through tinkering at home, tinkering at work, and the skill of being a mediator served to scaffold concepts that students were currently learning in engineering. There was a negative direct relationship between students’ ability to make connections between their home activities to scaffold what they are currently learning and their certainty of graduating with an engineering degree. However, first-generation college students’ perceptions of performing well in their engineering coursework and their sense of belonging in the classroom positively supported their certainty of graduating thus emphasizing the importance of connecting students’ funds of knowledge to engineering coursework and classroom instruction. Implications for possible approaches towards connecting first-generation college students’ funds of knowledge to engineering coursework and classroom culture are discussed.more » « less
-
This Innovative Practice paper describes the Local Research Experiences for Undergraduates (LREU) program that was established by the Computing Alliance of Hispanic-Serving Institutions (CAHSI) at Hispanic-serving institutions (HSIs) in 2021 to increase the number of students, particularly students from underrepresented populations, who enter graduate programs in computer science. Since its first offering in Spring 2022, the LREU program has involved 182 faculty and 253 students. The LREU program funds undergraduate research experiences at the students’ home institutions with an emphasis on first-generation students and those with financial needs. The motivation for the program is to address the low number of domestic students, particularly Hispanics and other minoritized populations, who seek and complete graduate degrees. Research shows that participation in research activities predicts college outcomes such as GPA, retention, and persistence. Even though these studies inform us of the importance of REU programs, many programmatic efforts are summer experiences and, while students may receive support, faculty mentors rarely receive coaching or professional development efforts. What distinguishes the LREU program is the focus on the deliberative development of students’ professional and research skills; faculty coaching on the Affinity Research Group model; and the learning community established to share experiences and practices and to learn from each other. Students, who are matched with faculty mentors based on their areas of interest, work with their mentor to co-create a research plan. Students keep a research journal in which they record what they have learned and identify areas for their growth and development as researchers. The LREU provides an opportunity for the LREU participants to cultivate a growth mindset through deliberate practice and reflection from personal, professional, social, and academic perspectives. The paper discusses the multi-institutional perspectives that help CAHSI understand the types of challenges faced in undergraduate research programs, how faculty mentors communicate and make decisions, and how mentors resolve challenges, allowing the research community to better understand students’ and faculty experiences. In addition, the paper reports on research and evaluation results that documented mentors’ growth in their knowledge of effective research mentoring practices and students’ learning gains in research and other skills. The paper also describes the impact of the learning community, e.g., how it supports developing strategies for interaction with and mentoring students from underrepresented populations.more » « less
-
Many college students in West Virginia hail from rural communities and are the first in their families to pursue an undergraduate degree. Research indicates that first-generation college students can face particular barriers to their postsecondary persistence, as can rural students. However, data on the persistence of first-generation college students who are also from rural places is scant. To better understand—and help remove—the barriers confronting such young people interested in STEM (Science, Technology, Engineering and Mathematics), the FIRST TWO Project (https://first2network.org/) brings together community college and university faculty, administrators, national laboratory professionals, and rural education experts. The FIRST TWO pilot program integrates early STEM experiences via internships, a support network for rural first-generation STEM students, and STEM skills development through a discovery-based "principles of research and development" college seminar for first-year students. A "Hometown Ambassadors" program component prepares students to return to their home communities to engage younger students’ interest in STEM, and teachers’ and school board members’ support for STEM education. Our goal is for project courses and support mechanisms to be fully transferrable to other institutions of higher education in the state so that, ultimately, more rural first-generation students participate in the wider STEM enterprise. Funding for the project is provided by the National Science Foundation INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science) initiative.more » « less
An official website of the United States government

