skip to main content


Title: Recognizing Engineering Students’ Funds of Knowledge: Creating and Validating Survey Measures
This research base paper examines students who are the first in their families to attend college. Our research seeks to understand the role students’ funds of knowledge makes in first-generation college students’ undergraduate experience. Funds of knowledge are the set of formal/informal knowledge and skills that students learn through family, friends, and communities outside of academic institutions. This paper reports funds of knowledge themes relevant to first-generation college students in engineering and the process of gathering validity evidence to support the funds of knowledge themes. Using ethnographic and interview data, six themes emerged: connecting experiences, community networks, tinkering knowledge, perspective taking, reading people, and mediational skills. Pilot data collected at two institutions were used to run exploratory factor analysis to verify the underlying theoretical structures among the themes. Results of the exploratory factor analysis found that almost all items reliably loaded onto their respective constructs. The funds of knowledge identified in this study are not an exhaustive account, nevertheless uncovering these hidden assets can support first-generation college students to see their experiences as equally valuable knowledge in engineering. We are currently in an ongoing process of collecting a second dataset to perform a confirmatory factor analysis, i.e., the next phase of the validation process for survey instrument development.  more » « less
Award ID(s):
1734044
NSF-PAR ID:
10099256
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Review & directory - American Society for Engineering Education
ISSN:
0092-4326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. First-generation college students have entered the spotlight of educational research and reform. This shift in perspective has been covered in popular media, for example, in The Chronicle of Higher Education’s series entitled “Engine of Inequality,” which analyzes the challenges facing first-generation college students. However, engineering programs have been slower in responding to this new emphasis on first-generation college students, perhaps assuming that the lack of success of underrepresented groups is a result of deficiencies in the students’ background and preparation. Our research challenges this assumption by explicitly investigating the connections between first-generation engineering students’ success and their experiences within higher education, using a large-scale quantitative survey. Whereas the deficiency perspective focuses on what these students lack and how they need to change themselves in order to adapt to engineering undergraduate curricula, this study seeks to understand how first-generation college student’s funds of knowledge (i.e., family and cultural knowledge developed by growing up in poor and/or working households) can be leveraged in their engineering work and the factors that contribute to their success in engineering. Using ethnographic data of first-generation college students in engineering, from prior work, seven themes were created to capture aspects of students’ funds of knowledge. The themes were classified as follows: community networks, lived experiences, tinkering knowledge from home, tinkering knowledge from work, perspective taking, reading people, and translation among people. To date, the funds of knowledge themes have been validated, at the first level, using exploratory factor analysis with a broad range of engineering students from first-years to fourth-year of higher at two institutions, one in the Midwest and one in the mountain region. Convenience sampling was used to test and validate the funds of knowledge survey constructs. We are currently in our second data collection process. The large-scale survey will be administered to upperclassman and alumni at five participating institutions across the United States, i.e., in a large public polytechnic, small selective private polytechnic, large land grant, large sub-urban public, and large public universities. 
    more » « less
  2. Abstract Background

    Students who are the first in their families to attend college are an integral part of undergraduate engineering programs. Growing bodies of research argue that educators could better support these students if they understood the unique backgrounds, experiences, and knowledge they bring with them to higher education.

    Purpose/Hypothesis

    The purpose of this article is twofold. First, we identify salient funds of knowledge used by a group of first‐generation college students in their educational and work‐related experiences. Secondly, we use the funds of knowledge identified in our participants' experiences to create a survey instrument.

    Design/Method

    A mixed methods approach was used. Ethnographic interview data of six first‐generation college students were used to hypothesize constructs and create survey items. Survey data were collected from 812 students. Exploratory and confirmatory factor analyses were used to verify the underlying theoretical structures among the survey items and hypothesized constructs.

    Results

    Validity evidence supported a 10‐factor model as opposed to the hypothesized 6‐factor model. The 10 latent constructs that make up the funds of knowledge instrument are as follows: tinkering knowledge from home, tinkering knowledge from work, connecting experiences, networks from family members, networks from college friends, networks from coworkers, networks from neighborhood friends, perspective taking, reading people, and mediating ability.

    Conclusions

    Recognizing first‐generation college students' funds of knowledge is a first step to creating curricular spaces and experiences that better serve them. A survey scale allows educators to empirically examine how these accumulated bodies of knowledge are transmitted to capital, create advantages in engineering, and provides a useful tool to bridge students' knowledge in the classroom.

     
    more » « less
  3. First-generation college students in engineering accumulate bodies of knowledge through their working-class families. In our ethnographic data of first-generation college students, we identified tinkering knowledge from home and from work, perspective taking, mediational ability, and connecting experiences as knowledge sources brought to engineering. The purpose of this paper was to understand how first-generation college students’ accumulated bodies of knowledge (i.e., funds of knowledge) support their beliefs about performing well in engineering coursework, feeling a sense of belonging in the classroom, and certainty of graduating. Data for this study came from a survey administered in the Fall of 2018 from ten universities across the US. In this study, only the sample of students who indicated their parents had less than a bachelor’s degree (n = 378) were used. A structural equation modeling technique was employed to examine several interconnected research questions pertaining to funds of knowledge, performance/competence beliefs, classroom belongingness, and certainty of graduating with an engineering degree. Our analysis demonstrates that the accumulated bodies of knowledge obtained through tinkering at home, tinkering at work, and the skill of being a mediator served to scaffold concepts that students were currently learning in engineering. There was a negative direct relationship between students’ ability to make connections between their home activities to scaffold what they are currently learning and their certainty of graduating with an engineering degree. However, first-generation college students’ perceptions of performing well in their engineering coursework and their sense of belonging in the classroom positively supported their certainty of graduating thus emphasizing the importance of connecting students’ funds of knowledge to engineering coursework and classroom instruction. Implications for possible approaches towards connecting first-generation college students’ funds of knowledge to engineering coursework and classroom culture are discussed. 
    more » « less
  4. In this work-in-progress paper we present emergent recruitment issues encountered during an ongoing design-based project with participants from two-year colleges for an NSF-funded scholarship program. Our hope is to connect with researchers who have previously explored similar issues or may be experiencing them in their current work. Student Pathways in Engineering and Computing for Transfer Students (SPECTRA) is an NSF S-STEM program that provides financial assistance to students transferring from the South Carolina Technical College System into Engineering or Computing majors at Clemson University [1]. SPECTRA also assists students by connecting them with peers at the technical colleges who move together through the transfer process to Clemson and are supported by the SPECTRA program until graduation. In addition to exploring the experiences of current SPECTRA participants, we investigate how the project can be scaled to include more students and sustained after NSF support ends. The 2021-2022 academic year is the third of the five-year program, although, given emergent recruitment issues, we foresee application for a no-cost extension. The primary concern is the low number of students currently supported in comparison to our goals, highlighting recruitment for further examination. We planned to support up to twenty students in year 1, 52 students in year 2, 70 students in year 3, but our actual numbers in the first three years are 7, 12, and 28 students. Given this trend, our concern over how we recruit students into SPECTRA is now at the forefront of our work. The program is not reaching those students who are eligible, and low recruitment has limited the quality of research needed to inform the construction of a sustainable program. To explore recruitment, we have added interviews with potential students at the technical colleges. In addition to this interview process, we have reviewed our internal practices, analysed existing public information and social media from similar programs, and reviewed existing literature from related research and practice. We identified aspects that may have impacted our current situation. The first was explicit, being the impact of COVID-19 on our ability to hold in-person recruitment events. Similar to studies that have identified other COVID-19 impacts to two-year institutions such as “retention rates declined the most in the community college sector (-2.1 pp to 51.6%)” [2], “disparities in upward transfer mobility increased during the pandemic year” [3], and community colleges being hit hardest “with a 9.4 percent decline” in enrollment [4], we intend to further clarify the influence of COVID-19 on our context. COVID-19 also played a role with regard to the need for scholarship funds, as one of the technical colleges in our program used federal relief funds to provide free tuition for all students during the 2020-2021 academic year. Another potential impact is the effectiveness of the SPECTRA webpages and other online materials to meet the needs of potential students considering the program. In this work-in-progress paper, we will share how we are addressing recruitment issues and how new interventions are impacting recruitment. 
    more » « less
  5. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less