Utilizing the Affinity Research Group (ARG) model, the Computing Alliance of Hispanic Serving Institutions (CAHSI) has provided training for faculty and student research experiences for decades. ARG, a CAHSI signature practice, focuses on deliberate, structured faculty and student research, with accompanying technical, communication, and professional skills development. In the latest iterations that have spanned the pandemic and its recovery, CAHSI has iterated on a virtual training and support network for faculty and students interested in broadening the participation of Hispanic undergraduate students in computer science to increase the number of Hispanics who move on to graduate studies in the field. This work-in-progress paper analyzes shifting support structures during a multi-year effort to promote undergraduate research development using the Affinity Research Group (ARG) model. As CAHSI grows to include research-intensive universities that have recently reached the 25% Hispanic enrollment threshold, the faculty mentor training has evolved to emphasize a growth mindset and asset-based frameworks for working with undergraduate students in research, particularly important in computing departments where graduate students are more commonly engaged in research. The paper describes areas of need as the populations of faculty and students shift. It addresses the questions: R1) How do faculty engaged in the LREU shift perspectives regarding a) student selection for research, b) pedagogical purposes of research for student development, and c) their ability to implement ARG? R2) To what extent do designed elements of the LREU professional development inform faculty practice and faculty perspectives regarding undergraduate research? 
                        more » 
                        « less   
                    
                            
                            Strengthening CS Research Capacity of Undergraduate Hispanic Students Through the Local REU Model
                        
                    
    
            This Innovative Practice paper describes the Local Research Experiences for Undergraduates (LREU) program that was established by the Computing Alliance of Hispanic-Serving Institutions (CAHSI) at Hispanic-serving institutions (HSIs) in 2021 to increase the number of students, particularly students from underrepresented populations, who enter graduate programs in computer science. Since its first offering in Spring 2022, the LREU program has involved 182 faculty and 253 students. The LREU program funds undergraduate research experiences at the students’ home institutions with an emphasis on first-generation students and those with financial needs. The motivation for the program is to address the low number of domestic students, particularly Hispanics and other minoritized populations, who seek and complete graduate degrees. Research shows that participation in research activities predicts college outcomes such as GPA, retention, and persistence. Even though these studies inform us of the importance of REU programs, many programmatic efforts are summer experiences and, while students may receive support, faculty mentors rarely receive coaching or professional development efforts. What distinguishes the LREU program is the focus on the deliberative development of students’ professional and research skills; faculty coaching on the Affinity Research Group model; and the learning community established to share experiences and practices and to learn from each other. Students, who are matched with faculty mentors based on their areas of interest, work with their mentor to co-create a research plan. Students keep a research journal in which they record what they have learned and identify areas for their growth and development as researchers. The LREU provides an opportunity for the LREU participants to cultivate a growth mindset through deliberate practice and reflection from personal, professional, social, and academic perspectives. The paper discusses the multi-institutional perspectives that help CAHSI understand the types of challenges faced in undergraduate research programs, how faculty mentors communicate and make decisions, and how mentors resolve challenges, allowing the research community to better understand students’ and faculty experiences. In addition, the paper reports on research and evaluation results that documented mentors’ growth in their knowledge of effective research mentoring practices and students’ learning gains in research and other skills. The paper also describes the impact of the learning community, e.g., how it supports developing strategies for interaction with and mentoring students from underrepresented populations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10616483
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-5150-7
- Page Range / eLocation ID:
- 1 to 9
- Subject(s) / Keyword(s):
- Undergraduate Research Experiences broadening participation Student Professional Development
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative.more » « less
- 
            This work-in-progress innovative practice paper describes an approach and presents preliminary results of an effort by the NSF-funded Computing Alliance of Hispanic-Serving Institutions (CAHSI) to build research capacity of faculty at HSIs and students from underserved populations. A key factor in our nation's ability to innovate solutions to grand challenges and compete in a technology-enhanced world that rapidly changes is the involvement of individuals with different perspectives, experiences, and disciplinary knowledge. Diversifying representation in research cannot be achieved without involvement of HSIs, which enroll significant numbers of minoritized students in U.S. higher education. This paper describes a CAHSI-Google Institutional Research Program (IRP) that builds research capacity through partnerships between computing doctoral-granting CAHSI institutions and computing non-doctoral granting CAHSI institutions. This paper describes the IRP and its well-defined process to support faculty as they develop and refine research ideas and submit competitive proposals for funding through the IRP that includes a collaboration plan outlining coordination mechanisms and student professional development efforts.more » « less
- 
            This paper presents an innovative approach, applicable to all research-based fields, that identifies and broadly engages future computer science researchers. The Computing Alliance of Hispanic Serving Institutions (CAHSI) piloted a national virtual Research Experience for Undergraduates (vREU) during the summer of 2020. Funded by an NSF grant, the goal of the program was to ensure that students, in particular those with financial need, had opportunities to engage in research and gain critical skills while advancing their knowledge and financial resources to complete their undergraduate degrees and possibly move to advanced studies. The vREU pilot provided undergraduate research experiences for 51 students and 21 faculty drawn from 14 colleges and universities. The Affinity Research Group (ARG) model, based on a cooperative learning model, was used to guide faculty mentors throughout the eight-week vREU. ARG is a CAHSI signature practice with a focus on deliberate, structured faculty and student research, technical, communication, and professional skills development. At weekly meetings, faculty were provided resources and discussed a specific skill to support students’ research experience and development, which faculty put into immediate practice with their students. Evaluation findings include no statistical difference in student development between the face-to-face and virtual models with faculty and the benefit of training as an opportunity for faculty professional growth and impact. This faculty development model allows for rapid dissemination of the ARG model through practice and application with weekly faculty cohort meetings, coaching, and reflection.more » « less
- 
            This paper presents an innovative approach, applicable to all research-based fields, that identifies and broadly engages future computer science researchers. The Computing Alliance of Hispanic Serving Institutions (CAHSI) piloted a national virtual Research Experience for Undergraduates (vREU) during the summer of 2020. Funded by an NSF grant, the goal of the program was to ensure that students, in particular those with financial need, had opportunities to engage in research and gain critical skills while advancing their knowledge and financial resources to complete their undergraduate degrees and possibly move to advanced studies. The vREU pilot provided undergraduate research experiences for 51 students and 21 faculty drawn from 14 colleges and universities. The Affinity Research Group (ARG) model, based on a cooperative learning model, was used to guide faculty mentors throughout the eight-week vREU. ARG is a CAHSI signature practice with a focus on deliberate, structured faculty and student research, technical, communication, and professional skills development. At weekly meetings, faculty were provided resources and discussed a specific skill to support students’ research experience and development, which faculty put into immediate practice with their students. Evaluation findings include no statistical difference in student development between the face-to-face and virtual models with faculty and the benefit of training as an opportunity for faculty professional growth and impact. This faculty development model allows for rapid dissemination of the ARG model through practice and application with weekly faculty cohort meetings, coaching, and reflection.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    