skip to main content

Title: Large Volume Liquid State Scalar Overhauser Dynamic Nuclear Polarization at High Magnetic Field
Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (~0.1 ppm) and relatively large sample volume (~100 µL).
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B 0 , unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings J ex of the order of the electron Larmor frequency ω E . Numerical and analytical calculations show that in such J ex ≈ ± ω E cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
  2. Dynamic nuclear polarization (DNP) by the cross effect (CE) has become a game changer for solid-state nuclear magnetic resonance (NMR) spectroscopy. The efficiency of CE-DNP depends on the strength of the electron–electron coupling in biradical polarizing agents. Hence, the focus lately has been on designing biradicals with a large net exchange ( J ) and dipolar ( D ) coupling. In this study, we reveal that the crucial factor for CE-DNP is not the large sum, J + D , but rather the relative magnitude of J and D , expressed as the J / D ratio. We show that the mechanistic basis of this interference lies in the isotropic vs. the anisotropic nature of the J and D couplings, respectively. This interference can lead to a small (effective) electron–electron coupling for many orientations even when J + D is large, resulting in non-adiabatic rotor-events. We find that when 0 < | J / D | < 1 the CE-DNP efficiency is attenuated for the majority of orientations, with greater attenuation observed at higher magnetic fields and faster magic-angle spinning (MAS) frequency. The interference effect of J and D coupling introduced in this study can explain why many biradicals withmore »high or comparable J + D still show significantly divergent DNP performances. We debut J / D as a consequential criteria for designing efficient biradicals to robustly perform across a large range of B 0 fields and MAS frequencies.« less
  3. We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H– 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H– 13 C HETCOR NMR spectra show thatmore »the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H– 13 C HETCOR NMR spectra. 2D 1 H– 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.« less
  4. We describe a 395 GHz pulsed electron paramagnetic resonance (EPR) setup, and initial results of relaxation measure-ments and cw EPR at these frequencies in samples used for liquid- and solid-state nuclear magnetic resonance enhanced by dynamic nuclear polarization (DNP). Depending on the amount of spin –orbit coupling, the spin lattice relaxation becomes significantly faster at higher fields and frequencies, which has consequences for some DNP applications at high fields and frequencies. We will dis-cuss the requirements for (sub)millimeter-wave sources and com-ponents for DNP and pulsed EPR at even higher frequencies and fields, as even higher magnetic fields will become available in the near future.
  5. Structural investigations of biomolecules are typically confined to in vitro systems under extremely limited conditions. These investigations yield invaluable insights, but such experiments cannot capture important structural features imposed by cellular environments. Structural studies of proteins in their native contexts are not only possible using state-of-the-art sensitivity-enhanced (dynamic nuclear polarization, DNP) solid-state nuclear magnetic resonance (NMR) techniques, but these studies also demonstrate that the cellular context can and does have a dramatic influence on protein structure. In this chapter, we describe methods to prepare samples of isotopically labeled proteins at endogenous levels in cellular contexts alongside quality control methods to ensure that such samples accurately model important features of the cellular environment.