skip to main content


Title: J -Driven dynamic nuclear polarization for sensitizing high field solution state NMR
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B 0 , unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings J ex of the order of the electron Larmor frequency ω E . Numerical and analytical calculations show that in such J ex ≈ ± ω E cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.  more » « less
Award ID(s):
1808660
NSF-PAR ID:
10349895
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
4
ISSN:
1463-9076
Page Range / eLocation ID:
2118 to 2125
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Dynamic nuclear polarization (DNP) by the cross effect (CE) has become a game changer for solid-state nuclear magnetic resonance (NMR) spectroscopy. The efficiency of CE-DNP depends on the strength of the electron–electron coupling in biradical polarizing agents. Hence, the focus lately has been on designing biradicals with a large net exchange ( J ) and dipolar ( D ) coupling. In this study, we reveal that the crucial factor for CE-DNP is not the large sum, J + D , but rather the relative magnitude of J and D , expressed as the J / D ratio. We show that the mechanistic basis of this interference lies in the isotropic vs. the anisotropic nature of the J and D couplings, respectively. This interference can lead to a small (effective) electron–electron coupling for many orientations even when J + D is large, resulting in non-adiabatic rotor-events. We find that when 0 < | J / D | < 1 the CE-DNP efficiency is attenuated for the majority of orientations, with greater attenuation observed at higher magnetic fields and faster magic-angle spinning (MAS) frequency. The interference effect of J and D coupling introduced in this study can explain why many biradicals with high or comparable J + D still show significantly divergent DNP performances. We debut J / D as a consequential criteria for designing efficient biradicals to robustly perform across a large range of B 0 fields and MAS frequencies. 
    more » « less
  2. Biswas, Indranil (Ed.)
    ABSTRACT FtsZ filaments are the major structural component of the bacterial Z ring and are drivers of bacterial division. Crystal structures for FtsZ from some Gram-positive bacteria in the presence of GTP analogs suggest the possibility of a high-energy, “tense” conformation. It remains important to elucidate whether this tense form is the dominant form in filaments. Using dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) and differential isotopic labeling, we directly detected residues located at the intermonomer interface of GTP-bound wild-type (WT) Escherichia coli FtsZ filaments. We combined chemical shift prediction, homology modeling, and heteronuclear dipolar recoupling techniques to characterize the E. coli FtsZ filament interface and demonstrated that the monomers in active filaments assume a tense conformation. IMPORTANCE Bacterial replication is dependent on the cytoskeletal protein FtsZ, which forms filaments that scaffold and recruit other essential division proteins. While the FtsZ monomer is well studied across organisms, many questions remain about how the filaments form and function. Recently, a second monomer form was identified in Staphylococcus aureus that has far-reaching implications for FtsZ structure and function. However, to date, this form has not been directly observed outside S. aureus . In this study, we used solid-state NMR and dynamic nuclear polarization (DNP) to directly study the filaments of E. coli FtsZ to demonstrate that E. coli FtsZ filaments are primarily composed of this second, “tense” form of the monomer. This work is the first time GTP-bound, wild-type FtsZ filaments have been studied directly at atomic resolution and is an important step forward for the study of FtsZ filaments. 
    more » « less
  3. We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H– 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H– 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H– 13 C HETCOR NMR spectra. 2D 1 H– 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra. 
    more » « less
  4. Abstract

    Efficiently hyperpolarizing proton‐dense molecular solids through dynamic nuclear polarization (DNP) solid‐state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton‐rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol‐POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U‐13C,15N‐labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol‐POK is rationalized by MAS‐DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of13C–13C and15N–13C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.

     
    more » « less
  5. Abstract

    Efficiently hyperpolarizing proton‐dense molecular solids through dynamic nuclear polarization (DNP) solid‐state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton‐rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol‐POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U‐13C,15N‐labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol‐POK is rationalized by MAS‐DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of13C–13C and15N–13C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.

     
    more » « less