skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Objective, Multifaceted Characterization of Psychotic Disorders: Lexical, Structural, and Disfluency Markers of Spoken Language
Psychotic disorders are forms of severe mental illness characterized by abnormal social function and a general sense of disconnect with reality. The evaluation of such disorders is often complex, as their multifaceted nature is often difficult to quantify. Multimodal behavior analysis technologies have the potential to help address this need and supply timelier and more objective decision support tools in clinical settings. While written language and nonverbal behaviors have been previously studied, the present analysis takes the novel approach of examining the rarely-studied modality of spoken language of individuals with psychosis as naturally used in social, face-to-face interactions. Our analyses expose a series of language markers associated with psychotic symptom severity, as well as interesting interactions between them. In particular, we examine three facets of spoken language: (1) lexical markers, through a study of the function of words; (2) structural markers, through a study of grammatical fluency; and (3) disfluency markers, through a study of dialogue self-repair. Additionally, we develop predictive models of psychotic symptom severity, which achieve significant predictive power on both positive and negative psychotic symptom scales. These results constitute a significant step toward the design of future multimodal clinical decision support tools for computational phenotyping of mental illness.  more » « less
Award ID(s):
1722822
PAR ID:
10099453
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 20th ACM International Conference on Multimodal Interaction (ICMI)
Page Range / eLocation ID:
170 to 178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bipolar disorder, a severe chronic mental illness characterized by pathological mood swings from depression to mania, requires ongoing symptom severity tracking to both guide and measure treatments that are critical for maintaining long-term health. Mental health professionals assess symptom severity through semi-structured clinical interviews. During these interviews, they observe their patients’ spoken behaviors, including both what the patients say and how they say it. In this work, we move beyond acoustic and lexical information, investigating how higher-level interactive patterns also change during mood episodes. We then perform a secondary analysis, asking if these interactive patterns, measured through dialogue features, can be used in conjunction with acoustic features to automatically recognize mood episodes. Our results show that it is beneficial to consider dialogue features when analyzing and building automated systems for predicting and monitoring mood. 
    more » « less
  2. Language models have the potential to assess mental health using social media data. By analyzing online posts and conversations, these models can detect patterns indicating mental health conditions like depression, anxiety, or suicidal thoughts. They examine keywords, language markers, and sentiment to gain insights into an individual’s mental well-being. This information is crucial for early detection, intervention, and support, improving mental health care and prevention strategies. However, using language models for mental health assessments from social media has two limitations: (1) They do not compare posts against clinicians’ diagnostic processes, and (2) It’s challenging to explain language model outputs using concepts that the clinician can understand, i.e., clinician-friendly explanations. In this study, we introduce Process Knowledge-infused Learning (PK-iL), a new learning paradigm that layers clinical process knowledge structures on language model outputs, enabling clinician-friendly explanations of the underlying language model predictions. We rigorously test our methods on existing benchmark datasets, augmented with such clinical process knowledge, and release a new dataset for assessing suicidality. PKiL performs competitively, achieving a 70% agreement with users, while other XAI methods only achieve 47% agreement (average inter-rater agreement of 0.72). Our evaluations demonstrate that PK-iL effectively explains model predictions to clinicians. 
    more » « less
  3. Abstract Although digital health solutions are increasingly popular in clinical psychiatry, one application that has not been fully explored is the utilization of survey technology to monitor patients outside of the clinic. Supplementing routine care with digital information collected in the “clinical whitespace” between visits could improve care for patients with severe mental illness. This study evaluated the feasibility and validity of using online self-report questionnaires to supplement in-person clinical evaluations in persons with and without psychiatric diagnoses. We performed a rigorous in-person clinical diagnostic and assessment battery in 54 participants with schizophrenia (N = 23), depressive disorder (N = 14), and healthy controls (N = 17) using standard assessments for depressive and psychotic symptomatology. Participants were then asked to complete brief online assessments of depressive (Quick Inventory of Depressive Symptomatology) and psychotic (Community Assessment of Psychic Experiences) symptoms outside of the clinic for comparison with the ground-truth in-person assessments. We found that online self-report ratings of severity were significantly correlated with the clinical assessments for depression (two assessments used: R = 0.63, p < 0.001; R = 0.73, p < 0.001) and psychosis (R = 0.62, p < 0.001). Our results demonstrate the feasibility and validity of collecting psychiatric symptom ratings through online surveys. Surveillance of this kind may be especially useful in detecting acute mental health crises between patient visits and can generally contribute to more comprehensive psychiatric treatment. 
    more » « less
  4. Applied machine learning (ML) has not yet coalesced on standard practices for research ethics. For ML that predicts mental illness using social media data, ambiguous ethical standards can impact peoples’ lives because of the area’s sensitivity and material con- sequences on health. Transparency of current ethics practices in research is important to document decision-making and improve research practice. We present a systematic literature review of 129 studies that predict mental illness using social media data and ML, and the ethics disclosures they make in research publications. Rates of disclosure are going up over time, but this trend is slow moving – it will take another eight years for the average paper to have coverage on 75% of studied ethics categories. Certain practices are more readily adopted, or "stickier", over time, though we found pri- oritization of data-driven disclosures rather than human-centered. These inconsistently reported ethical considerations indicate a gap between what ML ethicists believe ought to be and what actually is done. We advocate for closing this gap through increased trans- parency of practice and formal mechanisms to support disclosure. 
    more » « less
  5. Abstract Background Oral histories from 9/11 responders to the World Trade Center (WTC) attacks provide rich narratives about distress and resilience. Artificial Intelligence (AI) models promise to detect psychopathology in natural language, but they have been evaluated primarily in non-clinical settings using social media. This study sought to test the ability of AI-based language assessments to predict PTSD symptom trajectories among responders. Methods Participants were 124 responders whose health was monitored at the Stony Brook WTC Health and Wellness Program who completed oral history interviews about their initial WTC experiences. PTSD symptom severity was measured longitudinally using the PTSD Checklist (PCL) for up to 7 years post-interview. AI-based indicators were computed for depression, anxiety, neuroticism, and extraversion along with dictionary-based measures of linguistic and interpersonal style. Linear regression and multilevel models estimated associations of AI indicators with concurrent and subsequent PTSD symptom severity (significance adjusted by false discovery rate). Results Cross-sectionally, greater depressive language ( β = 0.32; p = 0.049) and first-person singular usage ( β = 0.31; p = 0.049) were associated with increased symptom severity. Longitudinally, anxious language predicted future worsening in PCL scores ( β = 0.30; p = 0.049), whereas first-person plural usage ( β = −0.36; p = 0.014) and longer words usage ( β = −0.35; p = 0.014) predicted improvement. Conclusions This is the first study to demonstrate the value of AI in understanding PTSD in a vulnerable population. Future studies should extend this application to other trauma exposures and to other demographic groups, especially under-represented minorities. 
    more » « less