skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: World Trade Center responders in their own words: predicting PTSD symptom trajectories with AI-based language analyses of interviews
Abstract Background Oral histories from 9/11 responders to the World Trade Center (WTC) attacks provide rich narratives about distress and resilience. Artificial Intelligence (AI) models promise to detect psychopathology in natural language, but they have been evaluated primarily in non-clinical settings using social media. This study sought to test the ability of AI-based language assessments to predict PTSD symptom trajectories among responders. Methods Participants were 124 responders whose health was monitored at the Stony Brook WTC Health and Wellness Program who completed oral history interviews about their initial WTC experiences. PTSD symptom severity was measured longitudinally using the PTSD Checklist (PCL) for up to 7 years post-interview. AI-based indicators were computed for depression, anxiety, neuroticism, and extraversion along with dictionary-based measures of linguistic and interpersonal style. Linear regression and multilevel models estimated associations of AI indicators with concurrent and subsequent PTSD symptom severity (significance adjusted by false discovery rate). Results Cross-sectionally, greater depressive language ( β = 0.32; p = 0.049) and first-person singular usage ( β = 0.31; p = 0.049) were associated with increased symptom severity. Longitudinally, anxious language predicted future worsening in PCL scores ( β = 0.30; p = 0.049), whereas first-person plural usage ( β = −0.36; p = 0.014) and longer words usage ( β = −0.35; p = 0.014) predicted improvement. Conclusions This is the first study to demonstrate the value of AI in understanding PTSD in a vulnerable population. Future studies should extend this application to other trauma exposures and to other demographic groups, especially under-represented minorities.  more » « less
Award ID(s):
1650499
PAR ID:
10317236
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Psychological Medicine
ISSN:
0033-2917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stephanidis, Constantine; Chen, Jessie Y.; Fragomeni, Gino (Ed.)
    Post-traumatic stress disorder (PTSD) is a mental health condition affecting people who experienced a traumatic event. In addition to the clinical diagnostic criteria for PTSD, behavioral changes in voice, language, facial expression and head movement may occur. In this paper, we demonstrate how a machine learning model trained on a general population with self-reported PTSD scores can be used to provide behavioral metrics that could enhance the accuracy of the clinical diagnosis with patients. Both datasets were collected from a clinical interview conducted by a virtual agent (SimSensei) [10]. The clinical data was recorded from PTSD patients, who were victims of sexual assault, undergoing a VR exposure therapy. A recurrent neural network was trained on verbal, visual and vocal features to recognize PTSD, according to self-reported PCL-C scores [4]. We then performed decision fusion to fuse three modalities to recognize PTSD in patients with a clinical diagnosis, achieving an F1-score of 0.85. Our analysis demonstrates that machine-based PTSD assessment with self-reported PTSD scores can generalize across different groups and be deployed to assist diagnosis of PTSD. 
    more » « less
  2. Abstract The neurophysiological mechanisms in the human amygdala that underlie post-traumatic stress disorder (PTSD) remain poorly understood. In a first-of-its-kind pilot study, we recorded intracranial electroencephalographic data longitudinally (over one year) in two male individuals with amygdala electrodes implanted for the management of treatment-resistant PTSD (TR-PTSD) under clinical trial NCT04152993. To determine electrophysiological signatures related to emotionally aversive and clinically relevant states (trial primary endpoint), we characterized neural activity during unpleasant portions of three separate paradigms (negative emotional image viewing, listening to recordings of participant-specific trauma-related memories, and at-home-periods of symptom exacerbation). We found selective increases in amygdala theta (5–9 Hz) bandpower across all three negative experiences. Subsequent use of elevations in low-frequency amygdala bandpower as a trigger for closed-loop neuromodulation led to significant reductions in TR-PTSD symptoms (trial secondary endpoint) following one year of treatment as well as reductions in aversive-related amygdala theta activity. Altogether, our findings provide early evidence that elevated amygdala theta activity across a range of negative-related behavioral states may be a promising target for future closed-loop neuromodulation therapies in PTSD. 
    more » « less
  3. Emotions provide critical information regarding a person's health and well-being. Therefore, the ability to track emotion and patterns in emotion over time could provide new opportunities in measuring health longitudinally. This is of particular importance for individuals with bipolar disorder (BD), where emotion dysregulation is a hallmark symptom of increasing mood severity. However, measuring emotions typically requires self-assessment, a willful action outside of one's daily routine. In this paper, we describe a novel approach for collecting real-world natural speech data from daily life and measuring emotions from these data. The approach combines a novel data collection pipeline and validated robust emotion recognition models. We describe a deployment of this pipeline that included parallel clinical and self-report measures of mood and self-reported measures of emotion. Finally, we present approaches to estimate clinical and self-reported mood measures using a combination of passive and self-reported emotion measures. The results demonstrate that both passive and self-reported measures of emotion contribute to our ability to accurately estimate mood symptom severity for individuals with BD. 
    more » « less
  4. ImportanceMarked elevation in levels of depressive symptoms compared with historical norms have been described during the COVID-19 pandemic, and understanding the extent to which these are associated with diminished in-person social interaction could inform public health planning for future pandemics or other disasters. ObjectiveTo describe the association between living in a US county with diminished mobility during the COVID-19 pandemic and self-reported depressive symptoms, while accounting for potential local and state-level confounding factors. Design, Setting, and ParticipantsThis survey study used 18 waves of a nonprobability internet survey conducted in the United States between May 2020 and April 2022. Participants included respondents who were 18 years and older and lived in 1 of the 50 US states or Washington DC. Main Outcome and MeasureDepressive symptoms measured by the Patient Health Questionnaire-9 (PHQ-9); county-level community mobility estimates from mobile apps; COVID-19 policies at the US state level from the Oxford stringency index. ResultsThe 192 271 survey respondents had a mean (SD) of age 43.1 (16.5) years, and 768 (0.4%) were American Indian or Alaska Native individuals, 11 448 (6.0%) were Asian individuals, 20 277 (10.5%) were Black individuals, 15 036 (7.8%) were Hispanic individuals, 1975 (1.0%) were Pacific Islander individuals, 138 702 (72.1%) were White individuals, and 4065 (2.1%) were individuals of another race. Additionally, 126 381 respondents (65.7%) identified as female and 65 890 (34.3%) as male. Mean (SD) depression severity by PHQ-9 was 7.2 (6.8). In a mixed-effects linear regression model, the mean county-level proportion of individuals not leaving home was associated with a greater level of depression symptoms (β, 2.58; 95% CI, 1.57-3.58) after adjustment for individual sociodemographic features. Results were similar after the inclusion in regression models of local COVID-19 activity, weather, and county-level economic features, and persisted after widespread availability of COVID-19 vaccination. They were attenuated by the inclusion of state-level pandemic restrictions. Two restrictions, mandatory mask-wearing in public (β, 0.23; 95% CI, 0.15-0.30) and policies cancelling public events (β, 0.37; 95% CI, 0.22-0.51), demonstrated modest independent associations with depressive symptom severity. Conclusions and RelevanceIn this study, depressive symptoms were greater in locales and times with diminished community mobility. Strategies to understand the potential public health consequences of pandemic responses are needed. 
    more » « less
  5. A Mavragani (Ed.)
    BackgroundPosttraumatic stress disorder (PTSD) is a serious public health concern. However, individuals with PTSD often do not have access to adequate treatment. A conversational agent (CA) can help to bridge the treatment gap by providing interactive and timely interventions at scale. Toward this goal, we have developed PTSDialogue—a CA to support the self-management of individuals living with PTSD. PTSDialogue is designed to be highly interactive (eg, brief questions, ability to specify preferences, and quick turn-taking) and supports social presence to promote user engagement and sustain adherence. It includes a range of support features, including psychoeducation, assessment tools, and several symptom management tools. ObjectiveThis paper focuses on the preliminary evaluation of PTSDialogue from clinical experts. Given that PTSDialogue focuses on a vulnerable population, it is critical to establish its usability and acceptance with clinical experts before deployment. Expert feedback is also important to ensure user safety and effective risk management in CAs aiming to support individuals living with PTSD. MethodsWe conducted remote, one-on-one, semistructured interviews with clinical experts (N=10) to gather insight into the use of CAs. All participants have completed their doctoral degrees and have prior experience in PTSD care. The web-based PTSDialogue prototype was then shared with the participant so that they could interact with different functionalities and features. We encouraged them to “think aloud” as they interacted with the prototype. Participants also shared their screens throughout the interaction session. A semistructured interview script was also used to gather insights and feedback from the participants. The sample size is consistent with that of prior works. We analyzed interview data using a qualitative interpretivist approach resulting in a bottom-up thematic analysis. ResultsOur data establish the feasibility and acceptance of PTSDialogue, a supportive tool for individuals with PTSD. Most participants agreed that PTSDialogue could be useful for supporting self-management of individuals with PTSD. We have also assessed how features, functionalities, and interactions in PTSDialogue can support different self-management needs and strategies for this population. These data were then used to identify design requirements and guidelines for a CA aiming to support individuals with PTSD. Experts specifically noted the importance of empathetic and tailored CA interactions for effective PTSD self-management. They also suggested steps to ensure safe and engaging interactions with PTSDialogue. ConclusionsBased on interviews with experts, we have provided design recommendations for future CAs aiming to support vulnerable populations. The study suggests that well-designed CAs have the potential to reshape effective intervention delivery and help address the treatment gap in mental health. 
    more » « less