skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The nonconvex geometry of low-rank matrix optimizations with general objective functions
This work considers the minimization of a general convex function f (X) over the cone of positive semi-definite matrices whose optimal solution X* is of low-rank. Standard first-order convex solvers require performing an eigenvalue decomposition in each iteration, severely limiting their scalability. A natural nonconvex reformulation of the problem factors the variable X into the product of a rectangular matrix with fewer columns and its transpose. For a special class of matrix sensing and completion problems with quadratic objective functions, local search algorithms applied to the factored problem have been shown to be much more efficient and, in spite of being nonconvex, to converge to the global optimum. The purpose of this work is to extend this line of study to general convex objective functions f (X) and investigate the geometry of the resulting factored formulations. Specifically, we prove that when f (X) satisfies the restricted well-conditioned assumption, each critical point of the factored problem either corresponds to the optimal solution X* or a strict saddle where the Hessian matrix has a strictly negative eigenvalue. Such a geometric structure of the factored formulation ensures that many local search algorithms can converge to the global optimum with random initializations.  more » « less
Award ID(s):
1464205
PAR ID:
10099581
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The nonconvex geometry of low-rank matrix optimizations with general objective functions
Page Range / eLocation ID:
1235 to 1239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper considers the minimization of a general objective function f (X) over the set of non-square n × m matrices where the optimal solution X* is low-rank. To reduce the computational burden, we factorize the variable X into a product of two smaller matrices and optimize over these two matrices instead of X. We analyze the global geometry for a general and yet well-conditioned objective function f (X) whose restricted strong convexity and restricted strong smoothness constants are comparable. In particular, we show that the reformulated objective function has no spurious local minima and obeys the strict saddle property. These geometric properties imply that a number of iterative optimization algorithms (such as gradient descent) can provably solve the factored problem with global convergence. 
    more » « less
  2. Motivated by approximation Bayesian computation using mean-field variational approximation and the computation of equilibrium in multi-species systems with cross-interaction, this paper investigates the composite geodesically convex optimization problem over multiple distributions. The objective functional under consideration is composed of a convex potential energy on a product of Wasserstein spaces and a sum of convex self-interaction and internal energies associated with each distribution. To efficiently solve this problem, we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with parallel, sequential, and random update schemes. Under a quadratic growth (QG) condition that is weaker than the usual strong convexity requirement on the objective functional, we show that WPCG converges exponentially fast to the unique global optimum. In the absence of the QG condition, WPCG is still demonstrated to converge to the global optimal solution, albeit at a slower polynomial rate. Numerical results for both motivating examples are consistent with our theoretical findings. 
    more » « less
  3. Motivated by approximation Bayesian computation using mean-field variational approximation and the computation of equilibrium in multi-species systems with cross-interaction, this paper investigates the composite geodesically convex optimization problem over multiple distributions. The objective functional under consideration is composed of a convex potential energy on a product of Wasserstein spaces and a sum of convex self-interaction and internal energies associated with each distribution. To efficiently solve this problem, we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with parallel, sequential, and random update schemes. Under a quadratic growth (QG) condition that is weaker than the usual strong convexity requirement on the objective functional, we show that WPCG converges exponentially fast to the unique global optimum. In the absence of the QG condition, WPCG is still demonstrated to converge to the global optimal solution, albeit at a slower polynomial rate. Numerical results for both motivating examples are consistent with our theoretical findings. 
    more » « less
  4. Tucker decomposition is a popular technique for many data analysis and machine learning applications. Finding a Tucker decomposition is a nonconvex optimization problem. As the scale of the problems increases, local search algorithms such as stochastic gradient descent have become popular in practice. In this paper, we characterize the optimization landscape of the Tucker decomposition problem. In particular, we show that if the tensor has an exact Tucker decomposition, for a standard nonconvex objective of Tucker decomposition, all local minima are also globally optimal. We also give a local search algorithm that can nd an approximate local (and global) optimal solution in polynomial time. 
    more » « less
  5. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less