A singular Sphere Covering Inequality: uniqueness and symmetry of solutions to singular Liouville-type equations
- Award ID(s):
- 1715850
- PAR ID:
- 10099678
- Date Published:
- Journal Name:
- Mathematische Annalen
- ISSN:
- 0025-5831
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A bstract We study Euclidean D3-branes wrapping divisors D in Calabi-Yau orientifold compactifications of type IIB string theory. Witten’s counting of fermion zero modes in terms of the cohomology of the structure sheaf $$ {\mathcal{O}}_D $$ O D applies when D is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf $$ {\mathcal{O}}_{\overline{D}} $$ O D ¯ of the normalization $$ \overline{D} $$ D ¯ of D . We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, $$ {h}_{+}^{\bullet}\left({\mathcal{O}}_{\overline{D}}\right)=\left(1,0,0\right) $$ h + • O D ¯ = 1 0 0 and $$ {h}_{-}^{\bullet}\left({\mathcal{O}}_{\overline{D}}\right)=\left(0,0,0\right) $$ h − • O D ¯ = 0 0 0 give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups Γ. We use the action of Γ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes.more » « less
An official website of the United States government

