skip to main content


Title: Ultrasound-Assisted Manipulation of Micro-particles in Fluid Matrix to Create Highly Aligned Anisotropic Composite Structures
Structural anisotropy, often observed in naturally occurring materials such as wood and human tissues, is central to the function in several engineered and non-engineered applications. In this study, we present the theory and proof-of-concept demonstration of an ultrasound-assisted non-contact manufacturing approach to create well-defined spatial patterns of micro-particles within a fluid matrix. A chamber with opposing pair of ultrasonic transducers was designed and prototyped based on standing bulk acoustic wave theory, and it was used to study the effects of ultrasound frequency (1, 1.5, 2, 3 MHz) and voltage amplitude (80, 160 mVpp) on alignment characteristics of polymer micro-particles (mean Ø = 8 μm) suspended in water (0.01 g/ml). The experimental results were consistent with theory in that the micro-particles aligned along linear strands, with the inter-strand spacing reducing with increasing frequency (p < 0.05). Increasing voltage amplitude reduced the time taken to align the particles, but it did not significantly change the observed spacing (p > 0.05). The observed spacing, however, was higher than the theoretical spacing of half-wavelength, for each frequency and amplitude. The alignment of living human adipose derived stem cells in viscous alginate hydrogel matrix was also successfully demonstrated. The approach presented herein can be scaled up into manufacturing processes, including layered manufacturing, to create highly functional mechanically and/or electrically anisotropic composites through controlled spatial geometry, as well as to biofabricate engineered tissues with aligned cells and extracellular matrix components to mimic natural tissues.  more » « less
Award ID(s):
1652489
NSF-PAR ID:
10099900
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2018 IISE Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    3D bioprinting has been evolving as an important strategy for the fabrication of engineered tissues for clinical, diagnostic, and research applications. A major advantage of bioprinting is the ability to recapitulate the patient-specific tissue macro-architecture using cellular bioinks. The effectiveness of bioprinting can be significantly enhanced by incorporating the ability to preferentially organize cellular constituents within 3D constructs to mimic the intrinsic micro-architectural characteristics of native tissues. Accordingly, this work focuses on a new non-contact and label-free approach called ultrasound-assisted bioprinting (UAB) that utilizes acoustophoresis principle to align cells within bioprinted constructs. We describe the underlying process physics and develop and validate computational models to determine the effects of ultrasound process parameters (excitation mode, excitation time, frequency, voltage amplitude) on the relevant temperature, pressure distribution, and alignment time characteristics. Using knowledge from the computational models, we experimentally investigate the effect of selected process parameters (frequency, voltage amplitude) on the critical quality attributes (cellular strand width, inter-strand spacing, and viability) of MG63 cells in alginate as a model bioink system. Finally, we demonstrate the UAB of bilayered constructs with parallel (0°–0°) and orthogonal (0°–90°) cellular alignment across layers. Results of this work highlight the key interplay between the UAB process design and characteristics of aligned cellular constructs, and represent an important next step in our ability to create biomimetic engineered tissues.

     
    more » « less
  2. In attempts to engineer human tissues in the lab, bio-mimicking the cellular arrangement of natural tissues is critical to achieve the required biological and mechanical form and function. Although biofabrication employing cellular bioinks continues to evolve as a promising solution over polymer scaffold based techniques in creating complex multi-cellular tissues, the ability of most current biofabrication processes to mimic the requisite cellular arrangement is limited. In this study, we propose a novel biofabrication approach that uses forces generated by bulk standing acoustic waves (BSAW) to non-deleteriously align cells within viscous bioinks. We computationally determine the acoustic pressure pattern generated by BSAW and experimentally map the effects of BSAW frequency (0.71, 1, 1.5, 2 MHz) on the linear arrangement of two types of human cells (adipose-derived stem cells and MG63) in alginate. Computational results indicate a non-linear relationship between frequency and acoustic pressure amplitude. Experimental results demonstrate that the spacing between adjacent strands of aligned cells is affected by frequency (p < 0.0001), and this effect is independent of the cell type. Lastly, we demonstrate a synergistic technique of gradual crosslinking in tandem with the BSAW-induced alignment to entrap cells within crosslinked hydrogels. This study represents an advancement in engineered tissue biofabrication aimed at bio-mimicry. 
    more » « less
  3. Abstract

    Additive manufacturing, no longer reserved exclusively for prototyping components, can create parts with complex geometries and locally tailored properties. For example, multiple homogenous material sources can be used in different regions of a print or be mixed during printing to define properties locally. Additionally, heterogeneous composites provide an opportunity for another level of tuning properties through processing. For example, within particulate-filled polymer matrix composites before curing, the presence of an applied electric and/or magnetic fields can reorient filler particles and form hierarchical structures depending on the fields applied. Control of particle organization is important because effective material properties are highly dependent on the distribution of filler material within composites once cured. While previous work in homogenization and effective medium theories have determined properties based upon ideal analytic distributions of particle orientations and spatial location, this work expands upon these methods generating discrete distributions from quasi-Monte Carlo simulations of the electromagnetic processing event. Results of simulations provide predicted microarchitectures from which effective properties are determined via computational homogenization.

    These particle dynamics simulations account for dielectric and magnetic forces and torques in addition to hydrodynamic forces and hard particle separation. As such, the distributions generated are processing field dependent. The effective properties for a composite represented by this distribution are determined via computational homogenization using finite element analysis (FEA). This provides a path from constituents, through processing parameters to effective material properties. In this work, we use these simulations in conjunction with a multi-objective optimization scheme to resolve the relationships between processing conditions and effective properties, to inform field-assisted additive manufacturing processes.

    The constituent set providing the largest range of properties can be found using optimization techniques applied to the aforementioned simulation framework. This key information provides a recipe for tailoring properties for additive manufacturing design and production. For example, our simulation results show that stiffness for a 10% filler volume fraction can increase by 34% when aligned by an electric field as compared to a randomly distributed composite. The stiffness of this aligned sample is also 29% higher in the direction of the alignment than perpendicular to it, which only differs by 5% from the random case [1]. Understanding this behavior and accurately predicting composite properties is key to producing field processed composites and prints. Material property predictions compare favorably to effective medium theory and experimentation with trends in elastic and magnetic effective properties demonstrating the same anisotropic behavior as a result of applied field processing. This work will address the high computational expense of physics simulation based objective functions by using efficient algorithms and data structures. We will present an optimization framework using nested gradient searches for micro barium hexaferrite particles in a PDMS matrix, optimizing on composite magnetization to determine the volume fraction of filler that will provide the largest range of properties by varying the applied electric and magnetic fields.

     
    more » « less
  4. Various biomacromolecule components of extracellular matrix (ECM) link together to form a structurally stable composite. Monitoring of such matrix microstructure can be very important in studying structure-associated cellular processes, improving cellular function, and ensuring sufficient mechanical integrity in engineered tissues. This paper describes a novel method to study microscale alignment of matrix in engineered tissue scaffolds (ETS) that were usually composed of a variety of biomacromolecules derived by cells. as the organization of overall biomacromolecule network has been seldomly examined. First, a trained loading function was derived from Raman spectra of highly aligned native tissue via PCA, where prominent changes associated with Raman bands (e.g., 1444, 1465, 1605, 1627-1660 and 1665-1689 cm−1) were detected with respect to the polarized angle. These changes were mainly caused by the aligned matrix of many compounds within the tissue relative to the laser polarization, including proteins, lipids and carbohydrates. Hence this trained function was applied to quantify the alignment within ETS of various matrix components derived by cells. A simple metric called Amplitude Alignment Metric was derived to correlate the orientation dependence of polarized Raman spectra of ETS to the degree of matrix alignment. By acquiring polarized Raman spectra of ETS at micrometer regions, the Amplitude Alignment Metric was significantly higher in anisotropic ETS than isotropic ones. The PRS method showed a lower p-value for distinguishing the alignment between the two types of ETS as compared to the microscopic method for detecting fluorescently labeled protein matrices at similar microscopic scale. These results indicate the anisotropy of complex matrix in engineered tissue can be assessed at microscopic scale using a PRS-based simple metric, superior to traditional microscopic method. This PRS-based method can serve as a complementary tool for the design and assessment of engineered tissues that mimic the native matrix organizational microstructures. 
    more » « less
  5. Exposure of nanoparticles in a porous medium, such as a hydrogel, to low-intensity ultrasound has been observed to dramatically enhance particle penetration rate. Enhancement of nanoparticle penetration is a key issue affecting applications such as biofilm mitigation and targeted drug delivery in human tissue. The current study used fluorescent imaging to obtain detailed experimental measurements of the effect of ultrasound amplitude and frequency on diffusion of nanoparticles of different diameters in an agarose hydrogel, which is often used as a simulant for biofilms and biological tissues. We demonstrate that the acoustic enhancement occurs via the phenomenon of oscillatory diffusion, in which a combination of an oscillatory flow together with random hindering of the particles by interaction with hydrogel proteins induces a stochastic random walk of the particles. The measured variation of acoustic diffusion coefficients with amplitude and frequency were used to validate a previous statistical theory of oscillatory diffusion based on the continuous time random walk approach. 
    more » « less