Structural anisotropy, often observed in naturally occurring materials such as wood and human tissues, is central to the function in several engineered and non-engineered applications. In this study, we present the theory and proof-of-concept demonstration of an ultrasound-assisted non-contact manufacturing approach to create well-defined spatial patterns of micro-particles within a fluid matrix. A chamber with opposing pair of ultrasonic transducers was designed and prototyped based on standing bulk acoustic wave theory, and it was used to study the effects of ultrasound frequency (1, 1.5, 2, 3 MHz) and voltage amplitude (80, 160 mVpp) on alignment characteristics of polymer micro-particles (mean Ø = 8 μm) suspended in water (0.01 g/ml). The experimental results were consistent with theory in that the micro-particles aligned along linear strands, with the inter-strand spacing reducing with increasing frequency (p < 0.05). Increasing voltage amplitude reduced the time taken to align the particles, but it did not significantly change the observed spacing (p > 0.05). The observed spacing, however, was higher than the theoretical spacing of half-wavelength, for each frequency and amplitude. The alignment of living human adipose derived stem cells in viscous alginate hydrogel matrix was also successfully demonstrated. The approach presented herein can be scaled up into manufacturing processes, including layered manufacturing, to create highly functional mechanically and/or electrically anisotropic composites through controlled spatial geometry, as well as to biofabricate engineered tissues with aligned cells and extracellular matrix components to mimic natural tissues. 
                        more » 
                        « less   
                    
                            
                            Characterizing the Process Physics of Ultrasound-Assisted Bioprinting
                        
                    
    
            Abstract 3D bioprinting has been evolving as an important strategy for the fabrication of engineered tissues for clinical, diagnostic, and research applications. A major advantage of bioprinting is the ability to recapitulate the patient-specific tissue macro-architecture using cellular bioinks. The effectiveness of bioprinting can be significantly enhanced by incorporating the ability to preferentially organize cellular constituents within 3D constructs to mimic the intrinsic micro-architectural characteristics of native tissues. Accordingly, this work focuses on a new non-contact and label-free approach called ultrasound-assisted bioprinting (UAB) that utilizes acoustophoresis principle to align cells within bioprinted constructs. We describe the underlying process physics and develop and validate computational models to determine the effects of ultrasound process parameters (excitation mode, excitation time, frequency, voltage amplitude) on the relevant temperature, pressure distribution, and alignment time characteristics. Using knowledge from the computational models, we experimentally investigate the effect of selected process parameters (frequency, voltage amplitude) on the critical quality attributes (cellular strand width, inter-strand spacing, and viability) of MG63 cells in alginate as a model bioink system. Finally, we demonstrate the UAB of bilayered constructs with parallel (0°–0°) and orthogonal (0°–90°) cellular alignment across layers. Results of this work highlight the key interplay between the UAB process design and characteristics of aligned cellular constructs, and represent an important next step in our ability to create biomimetic engineered tissues. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652489
- PAR ID:
- 10153746
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract IntroductionCoaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection. MethodsPhospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression. ResultsCoaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments. ConclusionsOur results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine.more » « less
- 
            In attempts to engineer human tissues in the lab, bio-mimicking the cellular arrangement of natural tissues is critical to achieve the required biological and mechanical form and function. Although biofabrication employing cellular bioinks continues to evolve as a promising solution over polymer scaffold based techniques in creating complex multi-cellular tissues, the ability of most current biofabrication processes to mimic the requisite cellular arrangement is limited. In this study, we propose a novel biofabrication approach that uses forces generated by bulk standing acoustic waves (BSAW) to non-deleteriously align cells within viscous bioinks. We computationally determine the acoustic pressure pattern generated by BSAW and experimentally map the effects of BSAW frequency (0.71, 1, 1.5, 2 MHz) on the linear arrangement of two types of human cells (adipose-derived stem cells and MG63) in alginate. Computational results indicate a non-linear relationship between frequency and acoustic pressure amplitude. Experimental results demonstrate that the spacing between adjacent strands of aligned cells is affected by frequency (p < 0.0001), and this effect is independent of the cell type. Lastly, we demonstrate a synergistic technique of gradual crosslinking in tandem with the BSAW-induced alignment to entrap cells within crosslinked hydrogels. This study represents an advancement in engineered tissue biofabrication aimed at bio-mimicry.more » « less
- 
            Various biomacromolecule components of extracellular matrix (ECM) link together to form a structurally stable composite. Monitoring of such matrix microstructure can be very important in studying structure-associated cellular processes, improving cellular function, and ensuring sufficient mechanical integrity in engineered tissues. This paper describes a novel method to study microscale alignment of matrix in engineered tissue scaffolds (ETS) that were usually composed of a variety of biomacromolecules derived by cells. as the organization of overall biomacromolecule network has been seldomly examined. First, a trained loading function was derived from Raman spectra of highly aligned native tissue via PCA, where prominent changes associated with Raman bands (e.g., 1444, 1465, 1605, 1627-1660 and 1665-1689 cm−1) were detected with respect to the polarized angle. These changes were mainly caused by the aligned matrix of many compounds within the tissue relative to the laser polarization, including proteins, lipids and carbohydrates. Hence this trained function was applied to quantify the alignment within ETS of various matrix components derived by cells. A simple metric called Amplitude Alignment Metric was derived to correlate the orientation dependence of polarized Raman spectra of ETS to the degree of matrix alignment. By acquiring polarized Raman spectra of ETS at micrometer regions, the Amplitude Alignment Metric was significantly higher in anisotropic ETS than isotropic ones. The PRS method showed a lower p-value for distinguishing the alignment between the two types of ETS as compared to the microscopic method for detecting fluorescently labeled protein matrices at similar microscopic scale. These results indicate the anisotropy of complex matrix in engineered tissue can be assessed at microscopic scale using a PRS-based simple metric, superior to traditional microscopic method. This PRS-based method can serve as a complementary tool for the design and assessment of engineered tissues that mimic the native matrix organizational microstructures.more » « less
- 
            Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channelsEngineering organ-specific tissues for therapeutic applications is a grand challenge, requiring the fabrication and maintenance of densely cellular constructs composed of ~10 8 cells/ml. Organ building blocks (OBBs) composed of patient-specific–induced pluripotent stem cell–derived organoids offer a pathway to achieving tissues with the requisite cellular density, microarchitecture, and function. However, to date, scant attention has been devoted to their assembly into 3D tissue constructs. Here, we report a biomanufacturing method for assembling hundreds of thousands of these OBBs into living matrices with high cellular density into which perfusable vascular channels are introduced via embedded three-dimensional bioprinting. The OBB matrices exhibit the desired self-healing, viscoplastic behavior required for sacrificial writing into functional tissue (SWIFT). As an exemplar, we created a perfusable cardiac tissue that fuses and beats synchronously over a 7-day period. Our SWIFT biomanufacturing method enables the rapid assembly of perfusable patient- and organ-specific tissues at therapeutic scales.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
