skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No Evidence of Copy Number Variation in Acidic Mammalian Chitinase Genes (CHIA) in New World and Old World Monkeys
Copy number variation may be the most common form of structural genetic variation in the genome. Numerous studies have shown that gene copy number variation can correlate with phenotypic variation, where higher copy numbers correspond to increased expression of the protein and vice versa. Examples include some digestive enzyme genes, where variation in copy numbers and protein expression may be related to dietary differences. Increasing the expression of a digestive enzyme through higher gene copy numbers may thus be a potential mechanism for altering an organism’s digestive capabilities. I investigated copy number variation in genes coding for acidic mammalian chitinase, a chitinolytic digestive enzyme that may be used for the digestion of insect exoskeletons, in nonhuman primates with varying levels of insect consumption. I hypothesized that CHIA copy number correlates positively with level of insectivory, predicting higher copy numbers in more insectivorous primates. I assessed copy number variation with the QuantStudio 3D digital PCR platform, in a comparative sample of Old World and New World primate species (N = 10 species, one or two individuals each). Contrary to my prediction, no evidence of copy number variation was found and all species tested had two gene copies per diploid genome. These findings suggest that if acidic mammalian chitinase expression varies according to insect consumption in primates, it may be up- or downregulated through another mechanism.  more » « less
Award ID(s):
1650864
PAR ID:
10099914
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of primatology
ISSN:
1573-8604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensisandSturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multigene family evolution and single‐copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts and will facilitate future studies of molecular ecology in mammals. 
    more » « less
  2. null (Ed.)
    Abstract Precise control of gene expression is critical for biological research and biotechnology. However, transient plasmid transfections in mammalian cells produce a wide distribution of copy numbers per cell, and consequently, high expression heterogeneity. Here, we report plasmid-based synthetic circuits – Equalizers – that buffer copy-number variation at the single-cell level. Equalizers couple a transcriptional negative feedback loop with post-transcriptional incoherent feedforward control. Computational modeling suggests that the combination of these two topologies enables Equalizers to operate over a wide range of plasmid copy numbers. We demonstrate experimentally that Equalizers outperform other gene dosage compensation topologies and produce as low cell-to-cell variation as chromosomally integrated genes. We also show that episome-encoded Equalizers enable the rapid generation of extrachromosomal cell lines with stable and uniform expression. Overall, Equalizers are simple and versatile devices for homogeneous gene expression and can facilitate the engineering of synthetic circuits that function reliably in every cell. 
    more » « less
  3. Multicopy ampliconic gene families on the Y chromosome play an important role in spermatogenesis. Thus, studying their genetic variation in endangered great ape species is critical. We estimated the sizes (copy number) of nine Y ampliconic gene families in population samples of chimpanzee, bonobo, and orangutan with droplet digital polymerase chain reaction, combined these estimates with published data for human and gorilla, and produced genome-wide testis gene expression data for great apes. Analyzing this comprehensive data set within an evolutionary framework, we, first, found high inter- and intraspecific variation in gene family size, with larger families exhibiting higher variation as compared with smaller families, a pattern consistent with random genetic drift. Second, for four gene families, we observed significant interspecific size differences, sometimes even between sister species—chimpanzee and bonobo. Third, despite substantial variation in copy number, Y ampliconic gene families’ expression levels did not differ significantly among species, suggesting dosage regulation. Fourth, for three gene families, size was positively correlated with gene expression levels across species, suggesting that, given sufficient evolutionary time, copy number influences gene expression. Our results indicate high variability in size but conservation in gene expression levels in Y ampliconic gene families, significantly advancing our understanding of Y-chromosome evolution in great apes. 
    more » « less
  4. Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20–35%) of detected miRNAs had lineage-specific expression in the brain, 24–72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs. 
    more » « less
  5. Reinke, Valerie (Ed.)
    Abstract As an entomopathogenic nematode (EPN), Steinernema hermaphroditum parasitizes insect hosts and harbors symbiotic Xenorhabdus griffinae bacteria. In contrast to other Steinernematids, S. hermaphroditum has hermaphroditic genetics, offering the experimental scope found in Caenorhabditis elegans. To enable study of S. hermaphroditum, we have assembled and analyzed its reference genome. This genome assembly has five chromosomal scaffolds and 83 unassigned scaffolds totaling 90.7 Mb, with 19,426 protein-coding genes having a BUSCO completeness of 88.0%. Its autosomes show higher densities of strongly conserved genes in their centers, as in C. elegans, but repetitive elements are evenly distributed along all chromosomes, rather than with higher arm densities as in C. elegans. Either when comparing protein motif frequencies between nematode species or when analyzing gene family expansions during nematode evolution, we observed two categories of genes preferentially associated with the origin of Steinernema or S. hermaphroditum: orthologs of venom genes in S. carpocapsae or S. feltiae; and some types of chemosensory G protein-coupled receptors, despite the tendency of parasitic nematodes to have reduced numbers of chemosensory genes. Three-quarters of venom orthologs occurred in gene clusters, with the larger clusters comprising functionally diverse gene groups rather than paralogous repeats of a single venom gene. While assembling S. hermaphroditum, we coassembled bacterial genomes, finding sequence data for not only the known symbiont, X. griffinae, but also for eight other bacterial genera. All eight genera have previously been observed to be associated with Steinernema species or the EPN Heterorhabditis, and may constitute a second bacterial circle of EPNs. 
    more » « less