skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dual-targeting by CRISPR/Cas9 leads to efficient point-mutagenesis but only rare targeted deletions in the rice genome
The present study investigated the efficiency of CRISPR/Cas9 in creating genomic deletions as the basis of its application in removing selection marker genes or the intergenic regions. Three loci, representing a transgene and two rice genes, were targeted at two sites each, in separate experiments, and the deletion of the defined fragments was investigated by PCR and sequencing. Genomic deletions were found at a low rate among the transformed callus lines that could be isolated, cultured, and regenerated into plants harboring the deletion. However, randomly regenerated plants showed mixed genomic effects, and generally did not harbor heritable genomic deletions. To determine whether point mutations occurred at each targeted site, a total of 114 plants consisting of primary transgenic lines and their progeny were analyzed. Ninety-three plants showed targeting, 60 of which were targeted at both sites. The presence of point mutations at both sites was correlated with the guide RNA efficiency. In summary, genomic deletions through dual-targeting by the paired-guide RNAs were generally observed in callus, while de novo point mutations at one or both sites occurred at high rates in transgenic plants and their progeny, generating a variety of insertion–deletions or single-nucleotide variations. In this study, point mutations were exceedingly favored over genomic deletions; therefore, for the recovery of plant lines harboring targeted deletions, identifying early transformed clones harboring the deletions, and isolating them for plant regeneration is recommended.  more » « less
Award ID(s):
1826836
PAR ID:
10100011
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
3 biotech
ISSN:
2190-572X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary The ability of plant somatic cells to dedifferentiate, form somatic embryos and regenerate whole plantsin vitrohas been harnessed for both clonal propagation and as a key component of plant genetic engineering systems. Embryogenic culture response is significantly limited, however, by plant genotype in most species. This impedes advancements in both plant transformation‐based functional genomics research and crop improvement efforts. We utilized natural variation among maize inbred lines to genetically map somatic embryo generation potential in tissue culture and identify candidate genes underlying totipotency. Using a series of maize lines derived from crosses involving the culturable parent A188 and the non‐responsive parent B73, we identified a region on chromosome 3 associated with embryogenic culture response and focused on three candidate genes within the region based on genetic position and expression pattern. Two candidate genes showed no effect when ectopically expressed in B73, but the geneWox2awas found to induce somatic embryogenesis and embryogenic callus proliferation. Transgenic B73 cells with strong constitutive expression of the B73 and A188 coding sequences ofWox2awere found to produce somatic embryos at similar frequencies, demonstrating that sufficient expression of either allele could rescue the embryogenic culture phenotype. Transgenic B73 plants were regenerated from the somatic embryos without chemical selection and no pleiotropic effects were observed in theWox2aoverexpression lines in the regenerated T0 plants or in the two independent events which produced T1 progeny. In addition to linking natural variation in tissue culture response toWox2a, our data support the utility ofWox2ain enabling transformation of recalcitrant genotypes. 
    more » « less
  2. Summary CRISPR‐Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we exploreFaecalibaculum rodentiumCas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5′‐NNTA‐3′ PAM, targeting more abundant palindromic TA sites in plant genomes than the 5′‐NGG‐3′ PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5′‐NNTA‐3′ PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR‐Cas9 system. FrCas9 induces high‐efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2‐FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2‐FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9‐derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C‐to‐T and A‐to‐G base edits in rice plants. Whole‐genome sequencing‐based off‐target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2‐FrCas9 in plants, however, causes detectable guide RNA‐independent off‐target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR‐FrCas9 system for targeted mutagenesis, large deletions, C‐to‐T base editing, and A‐to‐G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR‐FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope. 
    more » « less
  3. null (Ed.)
    Maize ( Zea mays ssp. mays ) is a popular genetic model due to its ease of crossing, well-established toolkits, and its status as a major global food crop. Recent technology developments for precise manipulation of the genome are further impacting both basic biological research and biotechnological application in agriculture. Crop gene editing often requires a process of genetic transformation in which the editing reagents are introduced into plant cells. In maize, this procedure is well-established for a limited number of public lines that are amenable for genetic transformation. Fast-Flowering Mini-Maize (FFMM) lines A and B were recently developed as an open-source tool for maize research by reducing the space requirements and the generation time. Neither line of FFMM were competent for genetic transformation using traditional protocols, a necessity to its status as a complete toolkit for public maize genetic research. Here we report the development of new lines of FFMM that have been bred for amenability to genetic transformation. By hybridizing a transformable maize genotype high Type-II callus parent A (Hi-II A) with line A of FFMM, we introgressed the ability to form embryogenic callus from Hi-II A into the FFMM-A genetic background. Through multiple generations of iterative self-hybridization or doubled-haploid method, we established maize lines that have a strong ability to produce embryogenic callus from immature embryos and maintain resemblance to FFMM-A in flowering time and stature. Using an Agrobacterium -mediated standard transformation method, we successfully introduced the CRISPR-Cas9 reagents into immature embryos and generated transgenic and mutant lines displaying the expected mutant phenotypes and genotypes. The transformation frequencies of the tested genotypes, defined as the numbers of transgenic event producing T1 seeds per 100 infected embryos, ranged from 0 to 17.1%. Approximately 80% of transgenic plants analyzed in this study showed various mutation patterns at the target site. The transformable FFMM line, FFMM-AT, can serve as a useful genetic and genomic resource for the maize community. 
    more » « less
  4. Summary Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant–plant interactions and molecular trafficking. However, a major barrier toC. campestrisresearch is that a method to generate stable transgenic plants has not yet been developed.Here, we describe the development of aCuscutatransformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2andCcGRF/GIF), leading to a robust protocol forAgrobacterium‐mediatedC. campestristransformation.The stably transformed and regenerated RUBYC. campestrisplants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T‐DNA integration in the parasite genome were confirmed through TAIL‐PCR. TransformedC. campestrisalso produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for theAgrobacterium‐mediated transformation, but may also provide insight into the movement of molecules fromC. campestristo the host during parasitism.Thus, the protocol for transformation ofC. campestrisreported here overcomes a major obstacle toCuscutaresearch and opens new possibilities for studying parasitic plants and their interactions with hosts. 
    more » « less
  5. null (Ed.)
    The ERECTA (ER) family of genes, encoding leucine-rich repeat receptor-like kinase (RLK), influences complex morphological and physiological aspects of plants. Modulation of ER signaling leads to abiotic stress tolerance in diverse plant species. However, whether the gain in stress tolerance is accompanied with desirable agronomic performance is not clearly known. In this study, soybean plants potentially suppressed in ER signaling were evaluated for the phenotypic performance and drought response in the greenhouse. These plants expressed a dominant-negative Arabidopsis thaliana ER ( AtER ) called Δ Kinase to suppress ER signaling, which has previously been linked with the tolerance to water deficit, a major limiting factor for plant growth and development, directly compromising agricultural production. With the aim to select agronomically superior plants as stress-tolerant lines, transgenic soybean plants were subjected to phenotypic selection and subsequently to water stress analysis. This study found a strong inverse correlation of Δ Kinase expression with the agronomic performance of soybean plants, indicating detrimental effects of expressing Δ Kinase that presumably led to the suppression of ER signaling. Two lines were identified that showed favorable agronomic traits and expression of Δ Kinase gene, although at lower levels compared with the rest of the transgenic lines. The drought stress analysis on the progenies of these lines, however, showed that these plants were more susceptible to water-deficit stress as compared with the non-transgenic controls. The selected transgenic plants showed greater stomata density and conductance, which potentially led to higher biomass, and consequently more water demand and greater susceptibility to the periods of water withholding. 
    more » « less