Lanthanum strontium cobalt iron oxide (LSCF) is commonly used as a cathode in solid oxide fuel cells (SOFCs), because it is a mixed ionic-electronic conductor with reasonable oxygen ion conductivity and high electronic conductivity. Yttria stabilized zirconia (YSZ) is used as an electrolyte in SOFCs with good oxygen ion conductivity. AC techniques are used to test the performance of SOFCs. But electrode processes at the cathode and the anode cannot be studied separately using 2-probe electrical impedance spectroscopy (EIS). To overcome this problem, 2-probe EIS with three probes and DC tests were conducted. An LSCF/8YSZ/LSCF symmetrical bar-shaped cell was made, and platinum strip electrodes were applied as probes for EIS and DC measurements. Impedance spectra across the cathode and the platinum strip electrode and across the anode and the platinum strip electrode were measured separately. The sum was evaluated to see if it matches the EIS spectra across the cathode and the anode. The polarity was switched to study how it affects the electrode processes. The polarization resistances of the electrodes were also measured by a DC method separately. EIS and DC measurements are in good agreement. Results indicate the two electrodes need not be identical.
more »
« less
Measurement of Polarization Resistance of LSM + YSZ Electrodes on YSZ using AC and DC Methods
Most of the measurements of electrode polarization resistance are conducted using electrochemical impedance spectroscopy (EIS). The electrochemical devices, however, are typically used in a DC mode. The objective of the present work was to measure electrode polarization resistance using both EIS and DC techniques. A solid cylinder of 8YSZ of diameter ~1.17 cm and length ~5.00 cm was made by powder pressing followed by sintering. LSM + YSZ electrodes were applied on the two end surfaces of the cylinder upon which gold mesh was placed. Four Pt electrodes/probes were painted along the circumference. During DC measurements, DC voltage was applied across the end electrodes and potentials were measured at all four probes. The current was also measured. From these measurements electrode polarizations were estimated separately for the two electrodes as a function of current. EIS was conducted across the two end electrodes as well as across electrode-1 and probe-2, and across probe-2 and electrode-2. This allowed the determination of the polarization resistances of the two electrodes separately. Point by point additions of the electrode-1/probe-2 and probe-2/electrode-2 spectra matched the electrode-1/electrode-2 spectra. There was good agreement between the DC and the EIS measurements.
more »
« less
- Award ID(s):
- 1742696
- PAR ID:
- 10100062
- Date Published:
- Journal Name:
- Fuel cells
- ISSN:
- 1554-3951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper addresses the use of Ce 0.8 Gd 0.2 O 2−δ (GDC) infiltration into the Ni–(Y 2 O 3 ) 0.08 (ZrO 2 ) 0.92 (YSZ) fuel electrode of solid oxide cells (SOCs) for improving their electrochemical performance in fuel cell and electrolysis operation. Although doped ceria infiltration into Ni–YSZ has recently been shown to improve the electrode performance and stability, the mechanisms defining how GDC impacts electrochemical characteristics are not fully delineated. Furthermore, the electrochemical characteristics have not yet been determined over the full range of conditions normally encountered in fuel cell and electrolysis operation. Here we present a study of both symmetric and full cells aimed at understanding the electrochemical mechanisms of GDC-modified Ni–YSZ over a wide range of fuel compositions and temperatures. Single-step GDC infiltration at an appropriate loading substantially reduced the polarization resistance of Ni–YSZ electrodes in electrolyte-supported cells, as measured using electrochemical impedance spectroscopy (EIS) at various temperatures (600–800 °C) in a range of H 2 O–H 2 mixtures (3–90 vol% H 2 O). Fuel-electrode-supported cells had significant concentration polarization due to the thick Ni–YSZ supports. A distribution of relaxation times approach is used to develop a physically-based electrochemical model; the results show that GDC reduces the reaction resistance associated with three-phase boundaries, but also appears to improve oxygen transport in the electrode. Increasing the H 2 O fraction in the H 2 –H 2 O fuel mixture reduced both the three-phase boundary resistance and the gas diffusion resistance for Ni–YSZ; with GDC infiltration, the electrode resistance showed less variation with fuel composition. GDC infiltration improved the performance of fuel-electrode-supported full cells, which yielded a maximum power density of 2.28 W cm −2 in fuel cell mode and an electrolysis current density at 1.3 V of 2.22 A cm −2 , both at 800 °C.more » « less
-
This paper describes analysis of dropcast nanocrystalline and electrochemically deposited films of NiO and α-Fe 2 O 3 as model metal oxide semiconductors immersed in redox-inactive organic electrolyte solutions using electrochemical impedance spectroscopy (EIS). Although the data reported here fit a circuit commonly used to model EIS data of metal oxide electrodes, which comprises an RC circuit nested inside a second RC circuit that is in series with a resistor, our interpretation of the physical meaning of these circuit elements differs from that applied to EIS measurements of metal oxide electrodes immersed in redox-active media. The data presented here are most consistent with an interpretation in which the nested RC circuit represents charge transfer between the metal oxide film and the underlying metal electrode, and the non-nested RC circuit represents the resistance and capacitance associated with formation of a charge-compensating double-layer at the exposed interface between the metal electrode and electrolyte solution. Applying this interpretation to analysis of EIS data collected for metal oxide films in organic media enables the impact of film morphology on electrochemical behavior to be distinguished from the effects of the intrinsic electronic structure of the metal oxide. This distinction is crucial to the evaluation of nanostructured metal oxide electrodes for electrochemical energy storage and electrocatalysis applications.more » « less
-
Electrochemical (EC) and photoelectrochemical (PEC) water treatment systems are gaining popularity, necessitating new electrode materials that offer reliable performance across diverse application platforms. For applications specifically targeting dilute chemical pollutants ( i.e. , parts-per-million concentrations or less), beneficial electrode properties include high surface area to overcome kinetic overpotential losses, low electrode areal electrical resistance, and high water permeability with sufficient mechanical strength for use in electroactive membrane-based treatment systems. Here, we used electrospinning to fabricate (photo)electrodes from carbon nanofibers (CNFs) containing titanium dioxide (TiO 2 ) nanoparticles. Optimal CNF/TiO 2 composites were electrochemically and photochemically active with a surface area of ∼50 m 2 g −1 and electrode areal resistance of 2.66 Ω cm 2 , values comparable to commercial carbon-based electrode materials ( e.g. , Kynol Activated Carbon Cloth). Transformation experiments with carbamazepine (CBZ), a recalcitrant organic contaminant, suggest CNF/TiO 2 electrodes function dually as sorbents, first binding CBZ prior to oxidation at positive applied potentials. Complete CBZ transformation was observed in both EC (dark) and PEC (UV light; 280 mW cm −2 ) systems over 90 minutes, with PEC systems exhibiting 1.5-fold higher transformation rates ( k obs ∼ 0.18 min −1 ) at +1.00 V ( vs. Ag/AgCl). Composite electrodes also exhibited stability across repeated use, yielding consistent current densities over five experimental cycles (120 min each) of CBZ transformation (0.25 ± 0.03 mA cm −2 ). Because of their high surface area, electrical conductivity, photoactivity, and electrochemical stability, these electrospun CNF/TiO 2 composites represent promising (photo)electrode alternatives for diverse EC and PEC applications.more » « less
-
Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and operando Raman spectroscopy were used to study the electrochemical performance and carbon tolerance of SOFCs operating with niobium doped SrTiO 3 (STN) anodes infiltrated with combinations of Ni, Co, and Ce 0.8 Gd 0.2 O 2 (CGO) added to improve catalytic activity. Cell anodes were exposed to fuel feeds of humidified H 2 , pure CH 4 and combinations of CO 2 and CH 4 at an operating temperature of 750 °C. Under pure CH 4 , Raman data show that carbon forms on all anodes containing Ni. In cells with CGO, deposited carbon results in a decreased polarization resistance. This behavior may be due to benefits conferred by CGO to the electrocatalytic activity of triple phase boundaries, presumably through improved oxide ion conductivity and/or due to carbon securing a better electrical connection in the electrodes. Raman spectra from Co-only containing anodes show no sign of carbon deposition. The absence of observable carbon together with low frequency processes observed in the EIS suggest that Co may play a role in oxidizing carbon before measurable amounts accumulate.more » « less
An official website of the United States government

