skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of electrochemical properties of nanostructured metal oxide electrodes immersed in redox-inactive organic media
This paper describes analysis of dropcast nanocrystalline and electrochemically deposited films of NiO and α-Fe 2 O 3 as model metal oxide semiconductors immersed in redox-inactive organic electrolyte solutions using electrochemical impedance spectroscopy (EIS). Although the data reported here fit a circuit commonly used to model EIS data of metal oxide electrodes, which comprises an RC circuit nested inside a second RC circuit that is in series with a resistor, our interpretation of the physical meaning of these circuit elements differs from that applied to EIS measurements of metal oxide electrodes immersed in redox-active media. The data presented here are most consistent with an interpretation in which the nested RC circuit represents charge transfer between the metal oxide film and the underlying metal electrode, and the non-nested RC circuit represents the resistance and capacitance associated with formation of a charge-compensating double-layer at the exposed interface between the metal electrode and electrolyte solution. Applying this interpretation to analysis of EIS data collected for metal oxide films in organic media enables the impact of film morphology on electrochemical behavior to be distinguished from the effects of the intrinsic electronic structure of the metal oxide. This distinction is crucial to the evaluation of nanostructured metal oxide electrodes for electrochemical energy storage and electrocatalysis applications.  more » « less
Award ID(s):
1900125
PAR ID:
10396652
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
33
ISSN:
1463-9076
Page Range / eLocation ID:
17904 to 17916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical reactions at nanoscale structures possess unique characteristics, e.g. fast mass transport, high signal-to-noise ratio at low concentration, and insignificant ohmic losses even at low electrolyte concentrations. These properties motivate the fabrication of high density, laterally ordered arrays of nanopores, embedding vertically stacked metal–insulator–metal electrode structures and exhibiting precisely controlled pore size and interpore spacing for use in redox cycling. These nanoscale recessed ring-disk electrode (RRDE) arrays exhibit current amplification factors, AF RC , as large as 55-fold with Ru(NH 3 ) 6 2/3+ , indicative of capture efficiencies at the top and bottom electrodes, Φ t,b , exceeding 99%. Finite element simulations performed to investigate the concentration distribution of redox species and to assess operating characteristics are in excellent agreement with experiment. AF RC increases as the pore diameter, at constant pore spacing, increases in the range 200–500 nm and as the pore spacing, at constant pore diameter, decreases in the range 1000–460 nm. Optimized nanoscale RRDE arrays exhibit a linear current response with concentration ranging from 0.1 μM to 10 mM and a small capacitive current with scan rate up to 100 V s −1 . At the lowest concentrations, the average pore occupancy is 〈 n 〉 ∼ 0.13 molecule establishing productive electrochemical signals at occupancies at and below the single molecule level in these nanoscale RRDE arrays. 
    more » « less
  2. Climate change mitigation by decreasing worldwide CO2 emissions is an urgent and demanding challenge that requires innovative technical solutions. This work, inspired by vanadium redox flow batteries (VRFB), introduces an integrated electrochemical process for carbon capture and energy storage. It utilizes established vanadium and ferricyanide redox couples for pH modulation for CO2 desorption and absorbent regeneration. The developed process consumes electricity during the daytime─when renewable electricity is available─to desorb CO2 and charge the cell, and it can regenerate the absorbent for further CO2 absorption while releasing electricity to the grid during nighttime when solar power is unavailable. This research explores the process fundamentals and scalability potential, through an extensive study of the system’s thermodynamics, transport phenomena, kinetics, and bench-scale operations. Cyclic voltammetry (CV) was utilized to study the thermodynamics of the process, mapping the redox profiles to identify ideal potential windows for operation. The CV results indicated that an overpotential of approximately 0.3 V was required for driving redox reactions. Additionally, polarization studies were conducted to select the practical operating potential, identifying 0.5 V as optimal for the CO2 desorption cycle to provide sufficient polarity to overcome activation barriers in addition to the Nernstian potential. Mass transfer analysis balanced conductivity and desorption efficiency, with a 1:1 ratio identified as optimal for redox-active species and background electrolyte concentration. To further enhance the kinetics of the redox reactions, plasma treatment of electrode surfaces was implemented, resulting in a 43% decrease in charge transfer resistance, as measured by electrochemical impedance spectroscopy (EIS) analysis. Finally, a bench-scale operation of the system demonstrated an energy consumption of 54 kJ/mol CO2, which is competitive with other electrochemical carbon capture technologies. Besides its energy competitiveness, the process offers multiple additional advantages, including the elimination of precious metal electrodes, oxygen insensitivity in flue gas, scalability inspired by VRFB technology, and the unique ability to function as a battery during the absorbent regeneration process, enabling efficient day-night operation. 
    more » « less
  3. Abstract Perovskites have emerged as a forerunner of electronics research due to their vast potential for optoelectronic applications. The numerous combinations of constituent ions and the potential for doping of perovskites lead to a high demand to track the underlying electronic properties. Solution‐based electrochemistry is particularly promising for detailed and facile assessment of perovskites. Here, electrochemical impedance spectroscopy (EIS) of methylammonium lead iodide (MAPbI3) thin films is performed and model them with an equivalent circuit that accounts for solvent, ionic, and thin film effects. A dielectric constant consistent with prior AC studies and a diffusion constant harmonious with cation motion in MAPbI3are extracted. An electrical double layer thickness in the perovskite film of 54 nm is obtained, consistent with lithium doping in perovskite films. Comparing the EIS and equivalent circuit model of perovskite films to control ITO‐only data enabled the assignment of the ions at each interface. This comparison implied a double layer of primarily lithium ions inside the perovskite film at the solution interface with significant recombination of ions on the solution side of the interface. This demonstrates EIS as a powerful tool for studying the fundamental charge accumulation and transport processes in perovskite thin films. 
    more » « less
  4. Lanthanum strontium cobalt iron oxide (LSCF) is commonly used as a cathode in solid oxide fuel cells (SOFCs), because it is a mixed ionic-electronic conductor with reasonable oxygen ion conductivity and high electronic conductivity. Yttria stabilized zirconia (YSZ) is used as an electrolyte in SOFCs with good oxygen ion conductivity. AC techniques are used to test the performance of SOFCs. But electrode processes at the cathode and the anode cannot be studied separately using 2-probe electrical impedance spectroscopy (EIS). To overcome this problem, 2-probe EIS with three probes and DC tests were conducted. An LSCF/8YSZ/LSCF symmetrical bar-shaped cell was made, and platinum strip electrodes were applied as probes for EIS and DC measurements. Impedance spectra across the cathode and the platinum strip electrode and across the anode and the platinum strip electrode were measured separately. The sum was evaluated to see if it matches the EIS spectra across the cathode and the anode. The polarity was switched to study how it affects the electrode processes. The polarization resistances of the electrodes were also measured by a DC method separately. EIS and DC measurements are in good agreement. Results indicate the two electrodes need not be identical. 
    more » « less
  5. null (Ed.)
    This paper describes a GaNFET-based high-speed charge injection circuit to study fast redox processes at electrode-electrolyte interfaces. The circuit allows the rates of electrode processes, which are much faster than those accessible with a conventional potentiostat, to be measured. It is able to inject charge across the interface within a few nanoseconds, and also to hold the potential generated across the cell following injection for up to 1 s without appreciable (less than 1%) decay. In addition, the circuit can still monitor the current flowing through the cell, as in a conventional potentiostat. Preliminary test results with both a dummy load and a custom two-electrode electrochemical cell confirm the functionality of the proposed circuit. 
    more » « less