Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income.
more »
« less
Asymptotics and Optimal Designs of SLOPE for Sparse Linear Regression
In sparse linear regression, the SLOPE estimator generalizes LASSO by assigning magnitude-dependent regular- izations to different coordinates of the estimate. In this paper, we present an asymptotically exact characterization of the performance of SLOPE in the high-dimensional regime where the number of unknown parameters grows in proportion to the number of observations. Our asymptotic characterization enables us to derive optimal regularization sequences to either minimize the MSE or to maximize the power in variable selection under any given level of Type-I error. In both cases, we show that the optimal design can be recast as certain infinite-dimensional convex optimization problems, which have efficient and accurate finite-dimensional approximations. Numerical simulations verify our asymptotic predictions. They also demonstrate the superi- ority of our optimal design over LASSO and a regularization sequence previously proposed in the literature.
more »
« less
- Award ID(s):
- 1718698
- PAR ID:
- 10100129
- Date Published:
- Journal Name:
- IEEE International Symposium on Information Theory
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The lasso has been studied extensively as a tool for estimating the coefficient vector in the high-dimensional linear model; however, considerably less is known about estimating the error variance in this context. In this paper, we propose the natural lasso estimator for the error variance, which maximizes a penalized likelihood objective. A key aspect of the natural lasso is that the likelihood is expressed in terms of the natural parameterization of the multi-parameter exponential family of a Gaussian with unknown mean and variance. The result is a remarkably simple estimator of the error variance with provably good performance in terms of mean squared error. These theoretical results do not require placing any assumptions on the design matrix or the true regression coefficients. We also propose a companion estimator, called the organic lasso, which theoretically does not require tuning of the regularization parameter. Both estimators do well empirically compared to pre-existing methods, especially in settings where successful recovery of the true support of the coefficient vector is hard. Finally, we show that existing methods can do well under fewer assumptions than previously known, thus providing a fuller story about the problem of estimating the error variance in high-dimensional linear models.more » « less
-
We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Last, we prove that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.more » « less
-
Abstract In unconventional reservoirs, optimal completion controls are essential to improving well productivity and reducing costs. In this article, we propose a statistical model to investigate associations between shale oil production and completion parameters (e.g., completion lateral length, total proppant, number of hydraulic fracturing stages), while accounting for the influence of spatially heterogeneous geological conditions on hydrocarbon production. We develop a non-parametric regression method that combines a generalized additive model with a fused LASSO regularization for geological homogeneity pursuit. We present an alternating augmented Lagrangian method for model parameter estimations. The novelty and advantages of our method over the published ones are a) it can control or remove the heterogeneous non-completion effects; 2) it can account for and analyze the interactions among the completion parameters. We apply our method to the analysis of a real case from a Permian Basin US onshore field and show how our model can account for the interaction between the completion parameters. Our results provide key findings on how completion parameters affect oil production in that can lead to optimal well completion designs.more » « less
-
Regularized quantile regression (QR) is a useful technique for analyzing heterogeneous data under potentially heavy-tailed error contamination in high dimensions. This paper provides a new analysis of the estimation/prediction error bounds of the global solution of$$L_1$$-regularized QR (QR-LASSO) and the local solutions of nonconvex regularized QR (QR-NCP) when the number of covariates is greater than the sample size. Our results build upon and significantly generalize the earlier work in the literature. For certain heavy-tailed error distributions and a general class of design matrices, the least-squares-based LASSO cannot achieve the near-oracle rate derived under the normality assumption no matter the choice of the tuning parameter. In contrast, we establish that QR-LASSO achieves the near-oracle estimation error rate for a broad class of models under conditions weaker than those in the literature. For QR-NCP, we establish the novel results that all local optima within a feasible region have desirable estimation accuracy. Our analysis applies to not just the hard sparsity setting commonly used in the literature, but also to the soft sparsity setting which permits many small coefficients. Our approach relies on a unified characterization of the global/local solutions of regularized QR via subgradients using a generalized Karush–Kuhn–Tucker condition. The theory of the paper establishes a key property of the subdifferential of the quantile loss function in high dimensions, which is of independent interest for analyzing other high-dimensional nonsmooth problems.more » « less
An official website of the United States government

