skip to main content


Title: Soft Robotic Burrowing Device with Tip-Extension and Granular Fluidization
Mobile robots of all shapes and sizes move through the air, water, and over ground. However, few robots can move through the ground. Not only are the forces resisting movement much greater than in air or water, but the interaction forces are more complicated. Here we propose a soft robotic device that burrows through dry sand while requiring an order of magnitude less force than a similarly sized intruding body. The device leverages the principles of both tip-extension and granular fluidization. Like roots, the device extends from its tip; the principle of tip-extension eliminates skin drag on the sides of the body, because the body is stationary with respect to the medium. We implement this with an everting, pressure-driven thin film body. The second principle, granular fluidization, enables a granular medium to adopt a dynamic fluid-like state when pressurized fluid is passed through it, reducing the forces acting on an object moving through it. We realize granular fluidization with a flow of air through the core of the body that mixes with the medium at the tip. The proposed device could lead to applications such as search and rescue in mudslides or shallow subterranean exploration. Further, because it creates a physical conduit with its body, electrical lines, fluids, or even tools could be passed through this channel.  more » « less
Award ID(s):
1637446 1806833
NSF-PAR ID:
10100243
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
5918-5923
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robotic navigation on land, through air, and in water is well researched; numerous robots have successfully demonstrated motion in these environments. However, one frontier for robotic locomotion remains largely unexplored—below ground. Subterranean navigation is simply hard to do, in part because the interaction forces of underground motion are higher than in air or water by orders of magnitude and because we lack for these interactions a robust fundamental physics understanding. We present and test three hypotheses, derived from biological observation and the physics of granular intrusion, and use the results to inform the design of our burrowing robot. These results reveal that (i) tip extension reduces total drag by an amount equal to the skin drag of the body, (ii) granular aeration via tip-based airflow reduces drag with a nonlinear dependence on depth and flow angle, and (iii) variation of the angle of the tip-based flow has a nonmonotonic effect on lift in granular media. Informed by these results, we realize a steerable, root-like soft robot that controls subterranean lift and drag forces to burrow faster than previous approaches by over an order of magnitude and does so through real sand. We also demonstrate that the robot can modulate its pullout force by an order of magnitude and control its direction of motion in both the horizontal and vertical planes to navigate around subterranean obstacles. Our results advance the understanding and capabilities of robotic subterranean locomotion.

     
    more » « less
  2. Creating burrows through natural soils and sediments is a problem that evolution has solved numerous times, yet burrowing locomotion is challenging for biomimetic robots. As for every type of locomotion, forward thrust must overcome resistance forces. In burrowing, these forces will depend on the sediment mechanical properties that can vary with grain size and packing density, water saturation, organic matter and depth. The burrower typically cannot change these environmental properties, but can employ common strategies to move through a range of sediments. Here we propose four challenges for burrowers to solve. First, the burrower has to create space in a solid substrate, overcoming resistance by e.g., excavation, fracture, compression, or fluidization. Second, the burrower needs to locomote into the confined space . A compliant body helps fit into the possibly irregular space, but reaching the new space requires non-rigid kinematics such as longitudinal extension through peristalsis, unbending, or eversion. Third, to generate the required thrust to overcome resistance, the burrower needs to anchor within the burrow . Anchoring can be achieved through anisotropic friction or radial expansion, or both. Fourth, the burrower must sense and navigate to adapt the burrow shape to avoid or access different parts of the environment. Our hope is that by breaking the complexity of burrowing into these component challenges, engineers will be better able to learn from biology, since animal performance tends to exceed that of their robotic counterparts. Since body size strongly affects space creation, scaling may be a limiting factor for burrowing robotics, which are typically built at larger scales. Small robots are becoming increasingly feasible, and larger robots with non-biologically-inspired anteriors (or that traverse pre-existing tunnels) can benefit from a deeper understanding of the breadth of biological solutions in current literature and to be explored by continued research. 
    more » « less
  3. null (Ed.)
    Synopsis Many flying insects utilize a membranous structure for flight, which is known as a “wing.” However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders’ ballooning silks. According to the data, a crab spider weighing 20 mg spins 50–60 ballooning silks simultaneously, which are about 200 nm thick and 3.22 m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluid-dynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm. 
    more » « less
  4. null (Ed.)
    Continuum robots have high degrees of freedom and the ability to safely move in constrained environments. One class of soft continuum robot is the “vine” robot. This type of robot extends from its tip by everting or unfurling new material, driven by internal body pressure. Most vine robot examples store new body material in a reel at their base, passing it through the core of the robot to the tip, and like many continuum robots, steer by selectively lengthening or shortening one side of the body. While this approach to steering and material storage lends itself to a fully soft device, it has three key limitations: (i) internal friction of material passing through the core of the robot limits its length in tortuous paths, (ii) body buckling as the robot's body material is re-spooled at the base can prevent retraction, and (iii) constant curvature steering limits the robot's poses and object approach angles in a given workspace. This letter presents a hybrid soft-rigid robotic system comprising a soft vine robot body and a rigid, mobile, internal steering-reeling mechanism (SRM); this SRM is equipped with a reel for material storage, a bending actuator for steering, and is capable of actuating the robot at any point along its length. This hybrid configuration increases reach along tortuous paths, allows retraction, and increases the workspace. We describe the motivation for the device, generate its mathematical models, present its methods of operation, and verify experimentally the models we developed and the performance improvements over previous vine robots. 
    more » « less
  5. null (Ed.)
    Soft, tip-extending devices, or “vine robots,” are a promising new paradigm for navigating cluttered and confined environments. Because they lengthen from their tips, there is little relative movement of the body with the environment, and the compressible nature of the device allows it to pass through orifices smaller than its diameter. However, the interaction between these devices and the environment is not well characterized. Here we present a comprehensive mathematical model that describes vine robot behavior during environmental interaction that provides a basis from which informed designs can be generated in future works. The model incorporates transverse and axial buckling modes that result from growing into obstacles with varying surface normals, as well as internal path-dependent and independent resistances to growth. Accordingly, the model is able to predict the pressure required to grow through a given environment due to the interaction forces it experiences. We experimentally validate both the individual components and the full model. Finally, we present three design insights from the model and demonstrate how they each improve performance in confined space navigation. Our work helps advance the understanding of tip-extending, vine robots through quantifying their interactions with the environment, opening the door for new designs and impactful applications in the realms of healthcare, research, search and rescue, and space exploration. 
    more » « less