skip to main content


Title: Controlling subterranean forces enables a fast, steerable, burrowing soft robot

Robotic navigation on land, through air, and in water is well researched; numerous robots have successfully demonstrated motion in these environments. However, one frontier for robotic locomotion remains largely unexplored—below ground. Subterranean navigation is simply hard to do, in part because the interaction forces of underground motion are higher than in air or water by orders of magnitude and because we lack for these interactions a robust fundamental physics understanding. We present and test three hypotheses, derived from biological observation and the physics of granular intrusion, and use the results to inform the design of our burrowing robot. These results reveal that (i) tip extension reduces total drag by an amount equal to the skin drag of the body, (ii) granular aeration via tip-based airflow reduces drag with a nonlinear dependence on depth and flow angle, and (iii) variation of the angle of the tip-based flow has a nonmonotonic effect on lift in granular media. Informed by these results, we realize a steerable, root-like soft robot that controls subterranean lift and drag forces to burrow faster than previous approaches by over an order of magnitude and does so through real sand. We also demonstrate that the robot can modulate its pullout force by an order of magnitude and control its direction of motion in both the horizontal and vertical planes to navigate around subterranean obstacles. Our results advance the understanding and capabilities of robotic subterranean locomotion.

 
more » « less
Award ID(s):
1935548 1806833 1944816
NSF-PAR ID:
10250396
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Robotics
Volume:
6
Issue:
55
ISSN:
2470-9476
Page Range / eLocation ID:
Article No. eabe2922
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile robots of all shapes and sizes move through the air, water, and over ground. However, few robots can move through the ground. Not only are the forces resisting movement much greater than in air or water, but the interaction forces are more complicated. Here we propose a soft robotic device that burrows through dry sand while requiring an order of magnitude less force than a similarly sized intruding body. The device leverages the principles of both tip-extension and granular fluidization. Like roots, the device extends from its tip; the principle of tip-extension eliminates skin drag on the sides of the body, because the body is stationary with respect to the medium. We implement this with an everting, pressure-driven thin film body. The second principle, granular fluidization, enables a granular medium to adopt a dynamic fluid-like state when pressurized fluid is passed through it, reducing the forces acting on an object moving through it. We realize granular fluidization with a flow of air through the core of the body that mixes with the medium at the tip. The proposed device could lead to applications such as search and rescue in mudslides or shallow subterranean exploration. Further, because it creates a physical conduit with its body, electrical lines, fluids, or even tools could be passed through this channel. 
    more » « less
  2. Abstract

    Many marine animals can dynamically twist their pectoral fins while swimming. The effects of such dynamic twisting on the unsteady forces on the fin and its surrounding flow field are yet to be understood in detail. In this paper, a flat plate executing a heaving maneuver is subjected to a similar dynamic twisting. In particular, the effects of the direction of twist, non-dimensional heaving amplitude, and reduced frequency are studied using a force sensor and particle image velocimetry (PIV) measurements. Two reduced frequencies,k=0.105, and0.209, and two twisting modes are investigated. In the first twisting mode, the plate is twisted in the direction of the heave (forward-twist), and in the second mode, the plate is twisted opposite to the direction of the heave (backward-twist). Force sensor measurements show that the forward-twist recovers some of the lift that is usually lost during the upstroke of flapping locomotion. Additionally, the forward-twist maintains a near-constant lift coefficient during the transition between downstroke and upstroke, suggesting a more stable form of locomotion. PIV results show that forward-twist limits circulation and leading-edge vortex growth during the downstroke, keepingCd0at the cost of the reduced lift. By contrast, backward-twist increases the circulation during the downstroke, resulting in large increases in both lift and drag coefficients. Force sensor data also showed that this effect on the lift is reversed during the upstroke, where the backward-twist causes a negative lift. The effects of each twisting mode are mainly caused by the changes in the shear layer velocity that occur as a result of twisting about the spanwise axis along the mid-chord. The twisting performed by forward-twist reduces the effective angle of attack through the upstroke and downstroke, resulting in a reduced shear layer velocity and lower circulation. The twisting performed by backward-twist does the exact opposite, increasing the effective angle of attack through the upstroke and downstroke and consequently increasing the shear layer velocity and circulation.

     
    more » « less
  3. Abstract Flying fishes (family Exocoetidae) are known for achieving multi-modal locomotion through air and water. Previous work on understanding this animal’s aerodynamic and hydrodynamic nature has been based on observations, numerical simulations, or experiments on preserved dead fish, and has focused primarily on flying pectoral fins. The first half of this paper details the design and validation of a modular flying fish inspired robotic model organism (RMO). The second half delves into a parametric aerodynamic study of flying fish pelvic fins, which to date have not been studied in-depth. Using wind tunnel experiments at a Reynolds number of 30,000, we investigated the effect of the pelvic fin geometric parameters on aerodynamic efficiency and longitudinal stability. The pelvic fin parameters investigated in this study include the pelvic fin pitch angle and its location along the body. Results show that the aerodynamic efficiency is maximized for pelvic fins located directly behind the pectoral fins and is higher for more positive pitch angles. In contrast, pitching stability is neither achievable for positive pitching angles nor pelvic fins located directly below the pectoral fin. Thus, there is a clear a trade-off between stability and lift generation, and an optimal pelvic fin configuration depends on the flying fish locomotion stage, be it gliding, taxiing, or taking off. The results garnered from the RMO experiments are insightful for understanding the physics principles governing flying fish locomotion and designing flying fish inspired aerial-aquatic vehicles. 
    more » « less
  4. null (Ed.)
    Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these structures. Over the past few decades, many studies have investigated the mechanisms that cause different types of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration (VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved understanding of the cause of these vibrations. In this study, the parameters governing the turbulence-induced (buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified. These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient condition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the prediction of critical reduced velocity 〖(RV〗_cr) as a function of equivalent yaw angle (*) and Scruton number (Sc) through measurement of aerodynamic- damping and stiffness. Wind tunnel tests using a section model of a smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0º to 45º indicate that the mean drag coefficient 〖(C〗_D) and Strouhal number (St) of a yawed cable decreases with the yaw angle, while the mean lift coefficient 〖(C〗_L) remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry cable at a specified wind speed for a given yaw angle. 
    more » « less
  5. Abstract

    Conformal mapping techniques have been used in many applications in the two-dimensional environments of engineering and physics, especially in the two-dimensional incompressible flow field that was introduced by Prandtl and Tietjens. These methods show reasonable results in the case of comprehensive analysis of the local coefficients of complex airfoils. The mathematical form of conformal mapping always locally preserves angles of the complex functions but it may change the length of the complex model. This research is based on the design of turbine blades as hydrofoils divided into different individual hydrofoils with decreasing thickness from root to tip. The geometric shapes of these hydrofoils come from the original FX77W121 airfoil shape and from interpolating between the FX77W121, FX77W153, and FX77W258 airfoil shapes. The last three digits of this airfoil family approximate the thickness ratio times 1000 (FX77153 => 15.3 % thickness ratio). Of the different airfoil shapes specified for the optimal rotor, there are 23 unique shapes.[15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 28] This study describes the advantage of using at least one complex variable technique of transformation conformal mapping in two dimensions.

    Conformal mapping techniques are used to form a database for sectional lift and drag coefficients based on turbine blade design to be used in Blade Element Momentum (BEM) theory to predict the performance of a three bladed single rotor horizontal axis ocean current turbine (1.6-meter diameter) by considering the characteristics of the sea-water. In addition, by considering the fact that in the real ocean, the underwater ocean current turbines encounter different velocities, the maximum brake power will be investigated for different incoming current velocities. The conformal mapping technique is used to calculate the local lift coefficients of different hydrofoils with respect to different angles of attack: −180 ≤ AOA ≤ +180. These results will be compared to those from other methods obtained recently by our research group. This method considers the potential flow analysis module that follows a higher-order panel method based on the geometric properties of each hydrofoil cross section. The velocity and pressure fields are obtained directly by the applications of Bernoulli’s principle, then the lift coefficients are calculated from the results of the integration of the pressure field along the hydrofoil surface for any angle of attack. Ultimately, the results of this research will be used for further investigation of the design and construction of a small-scale experimental ocean current turbine to be tested in the towing tank at the University of New Orleans.

     
    more » « less