In this Work-in-Progress paper, we report on the challenges and successes of a large-scale First- Year Engineering and Computer Science Program at an urban comprehensive university, using quantitative and qualitative assessment results. Large-scale intervention programs are especially relevant to comprehensive minority serving institutions (MSIs) that serve a high percentage of first-generation college students who often face academic and socioeconomic barriers. Our program was piloted in 2015 with 30 engineering students, currently enrolls 60 engineering and computer science students, and is expected to grow to over 200 students by Fall 2020. The firstyear program interventions include: (i) block schedules for each cohort in the first year; (ii) redesigned project-based introduction to engineering and introduction to computer science courses; (iii) an introduction to mechanics course, which provides students with the foundation needed to succeed in the traditional physics sequence; and (iv) peer-led supplemental instruction (SI) workshops for Calculus, Physics and Chemistry. A faculty mentorship program was implemented to provide additional support to students, but was phased out after the first year. Challenges encountered in the process of expanding the program include administrative, such as scheduling and training faculty and SI leaders; barriers to improvement of math and science instruction; and more holistic concerns such as creating a sense of community and identity for the program. Quantitative data on academic performance includes metrics such as STEM GPA and persistence, along with the Force Concept Inventory (FCI) for physics. Qualitative assessments of the program have used student and instructor surveys, focus groups, and individual interviews to measure relationships among factors associated with college student support and to extract student perspectives on what works best for them. Four years of data tell a mixed story, in which the qualitative effect of the interventions on student confidence and identity is strong, while academic performance is not yet significantly different than that of comparison groups. One of the most significant results of the program is the development of a FYrE Professional Learning Community which includes faculty (both tenure-track and adjunct), department chairs, staff, and administrators from across the campus.
more »
« less
First-Year Experience (FYrE@ECST): Pre-Physics Course (WIP)
The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but have had no significant impact in the student performance in physics. Our hypothesis is that students, in addition to having limited understanding of calculus, struggle to understand the fundamental principles of physics and thus cannot apply their knowledge of math to theories in physics to solve problems. This work-in-progress paper describes an inquiry-based hands-on pre-physics course for first-year students as part of the FYrE@ECST program. The course is intended to prepare students for the calculus-based mechanics course in physics and covers about half of the competencies of a classical mechanics course, with focuses on the fundamental concepts of mechanics (i.e. Newton’s Laws, Types of forces, vectors, free-body diagrams, position, velocity and acceleration). Equations are only introduced in the second half of the semester, while the first half is directed to help students develop a deep understanding of these fundamental concepts. During classes, students run simple experiments, watch segments of movies and cartoons and are asked questions (written and orally) which can guide them to think intuitively and critically. A think-pair-share mode of instruction is implemented to promote inquiry and discussion. Students work in groups of five to discuss and solve problems, carry out experiments to better understand processes and systems, and share what they learned with the whole class. The paper presents preliminary results on student achievement.
more »
« less
- Award ID(s):
- 1727054
- PAR ID:
- 10100255
- Date Published:
- Journal Name:
- Proceedings 2018 CONECD Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In 2009, Gaston College launched the SPARC (Student Persistence and Retention through Curriculum, Cohorts, and Centralization) initiative to improve student engagement and enhance transfer student success. The initiative sought to revamp curricula by integrating inquiry-based instruction and introducing a research methods course, centralize STEM student support services, and provide scholarships to cohort students with unmet financial needs. To implement these services and offer scholarships to low-income, academically talented U.S. citizens or permanent residents, the College secured three National Science Foundation (NSF) S-STEM grants. The SPARC model has yielded promising results, with participating students experiencing increased fall-to-fall retention rates and three-year graduation rates.more » « less
-
Botanga, Chris (Ed.)Disparities in undergraduate STEM degree completion across different racial/ethnic groups have been a topic of increasing national concern. This study investigates the long-term outcomes of a STEM intervention program designed to increase the academic preparation, achievement and persistence of under-represented minority students.In particular, this study examines the extent to which participation in a STEM intervention program can impact the long-term persistence and graduation of first-time in college under-represented minority students. Using discrete-time competing risks analysis, results demonstrated that participants of the intervention program had a lower probability of drop out and higher probability of persisting in a STEM field of study compared to non-participants of the program. Additionally, descriptive results demonstrated that participants of the STEM intervention program had higher rates of graduation in any field compared to non-participants of the program, while program participation was not a significant predictor of six-year graduation. Findings highlight the importance of early academic preparation in Calculus and total credit accumulation to student success outcomes of URM students enrolled in STEM fields. Recommendations from this study focus on early intervention efforts, particularly in the areas of mathematics, that ensure URM students are adequately prepared with the skills needed to succeed in a STEM field of study.more » « less
-
ABSTRACT More than 50 high school students each year learn how to conduct science research at the Garcia Summer Scholars Program at Stony Brook University through hands-on, inquiry-based methods. Started in 1998, the program has already provided hundreds of students from diverse backgrounds a unique opportunity for outstanding scientific performance and achievement. In this paper, we present a brief overview of how the program operates as well as several case studies that display the effect of the Garcia Program on student accomplishment. The evidence provided demonstrates that the Garcia Program has had an overwhelmingly positive effect on its many student participants, regardless of their background or socio-economic status.more » « less
-
At San Francisco State University, a Hispanic Serving Institute and a Primarily Undergraduate Institution, 67% of engineering students are from ethnic minority groups, with only 27% of Hispanic students retained and graduated in their senior year. Additionally, only 14% of students reported full-time employment secured at the time of graduation. Of these secured jobs, only 54% were full-time positions (40+ hours a week). To improve the situation, San Francisco State University, in collaboration with two local community colleges, Skyline and Cañada Colleges, was recently funded by the National Science Foundation through a Hispanic Serving Institute Improving Undergraduate STEM Education Strengthening Student Motivation and Resilience through Research and Advising program to enhance undergraduate engineering education and build capacity for student success. This project will use a data-driven and evidence-based approach to identify the barriers to the success of underrepresented minority students and to generate new knowledge on the best practices for increasing students’ retention and graduation rates, self- efficacy, professional development, and workforce preparedness. Three objectives underpin this overall goal. The first is to develop and implement a Summer Research Internship Program together with community college partners. The second is to establish an HSI Engineering Success Center to provide students with academic resources, networking opportunities with industry, and career development tools. The third is to develop resources for the professional development of faculty members, including Summer Faculty Teaching Workshops, an Inclusive Teaching and Mentoring Seminar Series, and an Engineering Faculty Learning Community. Qualitative and quantitative approaches are used to assess the project outcomes using a survey instrument and interview protocols developed by an external evaluator. This paper discusses an overview of the project and its first-year implementation. The focus is placed on the introduction and implementation of the several main project components, namely the Engineering Success Center, Summer Research Internship Program, and Faculty Summer Teaching Workshop. The preliminary evaluation results, demonstrating the great success of these strategies, are also discussed.more » « less
An official website of the United States government

